Metrology for Nanomanufacturing

Key Elements for the Future of Nanomanufacturing: Instrumentation, Metrology, and Standards

Michael T. Postek
Chief, Precision Engineering Division
National Institute of Standards and Technology

February 6, 2008
Nanotechnology and Nanomanufacturing

• Nanotechnology is the frontier of innovation and is one of the most dynamic growth areas in the U. S.
 – Predicted by NSF to become a trillion dollar business
 – Large U. S. Federal government investment

• Nanometrology is needed by nanotechnology and nanomanufacturing more than any other prior technology.
 – NIST has been tasked by the NNI as the lead agency for Instrumentation, Metrology and Standards
 – NIST is co-lead with NSF on Nanomanufacturing.
Approximate 2005 Nanotechnology Spending

World-wide government spending has been (~$4.6B):
- $1.7 billion (36%) in North America, almost entirely accounted for by the U.S.
- $1.7 billion (36%) in Asia, dominated by Japan
- $1.1 billion (26%) in Western Europe, led by Germany
- $100 million in the rest of the world

Established corporations spent ($4.52B):
- $1.9 billion (42%) was in North America
- $1.7 billion (38%) was in Asia
- $850 million (19%) was in Europe
- $70 million (2%) was in the rest of the world

To date the spending is likely doubled
Nanotechnology and Nanomanufacturing

- Nanomanufacturing is the primary bridge over which these substantial investments can be recovered.
- That bridge is just being put on the drawing board
- ...and you are the architects
Nanotechnology and Nanomanufacturing

- Measurement science (metrology) is critical for successful Nanomanufacturing.
- Metrology has proven that it is value added.
- Semiconductor industry is the prime example because it is so well documented.
RTI International report:
Economic Impact of Measurement in the Semiconductor Industry

• NIST plays a leading role in developing SRMs, and most SRMs are either sold directly by NIST or are traceable to NIST standards.

• Many instrument and tool providers develop their own in-house standards to calibrate their equipment.

• These vendor-supplied standards are also usually NIST traceable.

• SRMs are used by most of the semiconductor supply chain and include the following:
 – Front-end processing
 • – thin film for transmission electron microscopy, or TEM (NIST SRM 2063a)
 • – scanning electronic microscopy, or SEM, performance (NIST SRM 2069b, 8091, and 2800)
 • – optical microscope linewidths (NIST SRM 475 and 476)
 • – implantation standards (NIST SRM 2133–2137)
 • – ellipsometry (NIST SRM 2531 and 2534)
 • – microscale dimensional measurement (NIST SRM 5001)
RTI International report: Conclusion: Measurement innovations add up to big savings for semiconductors.

RTI estimates that for every $1 spent on measurement, the industry as a whole saw a $3.30 return.

On average of 14 similar studies the ratio is $1:$44.
Metrology for Nanomanufacturing

• Critical to the realization of robust nanomanufacturing is the development of the necessary instrumentation, metrology, and standards.
• Integration of the instruments, their interoperability, and appropriate information management are also critical elements that must be considered for viable nanomanufacturing.
Metrology for Nanomanufacturing

• Advanced instrumentation, metrology and standards allow the physical dimensions, properties, functionality, and purity of the materials, to be measured and characterized.
• Enables production to be scaleable, controllable, predictable, and repeatable to meet market needs.
• Metrology need must be close to the critical processes
 – on-line vs. off-line
• Highly precise processes taking advantage of the economy of scale is a must.
“Flat-world” Nanotech Activities

- Fundamental knowledge gaps emerging
 - Materials
 - Measurements
 - Instrumentation
 - Standards
 - Modeling
 - Insufficient data
 - Inaccurate data
 - Environmental Health and Safety (EHS)

- Primary needs are: instrumentation, metrology and standards
 - Data, Data, Data
Instrumentation - Problem

- Much of the current measurement infrastructure currently used by nanotechnology/industry is only evolutionary.
- New potentially revolutionary metrology is needed for many applications.
- Automated, operator independent instrumentation adapted to nanomanufacturing.

- NNI Grand Challenge Workshop on Instrumentation and Metrology.
- IWG Instrumentation Metrology and Standards for Nanomanufacturing Workshop.
Why is this a Hard Problem?

- Much of the measurement infrastructure currently available for nanotechnology/nanomanufacturing is only evolutionary:
 - Optics
 - Transmission Electron Microscope
 - Scanning Electron Microscope
 - Force Microscopy, etc.

- New potentially revolutionary metrology is needed for many applications:
 - Helium Ion Microscope

- Automated, operator independent instrumentation adapted to nanomanufacturing

- Much of this was underscored in the NNI Grand Challenge Workshop on Instrumentation and Metrology and the recent NIST Nanomanufacturing Workshop.
Why is this a Hard Problem?

- Much of the measurement infrastructure currently available for nanotechnology/nanomanufacturing is only evolutionary.
 - Optics
 - Scanning Electron Microscope
 - Transmission Electron Microscope

- New potentially revolutionary metrology is needed for many applications.
 - Helium Ion Microscope

- Automated, operator independent instrumentation adapted to nanomanufacturing.

- Much of this was underscored in the NNI Grand Challenge Workshop on Instrumentation and Metrology and the recent NIST Nanomanufacturing Workshop.

Research into Basic Contrast Mechanisms Involved with Image Formation Needed

Once that is resolved, the same issues limiting the SEM accuracy need to be tackled.

Gold Nanoparticle Reference Material

<table>
<thead>
<tr>
<th>Field Of View</th>
<th>Detector</th>
<th>Dwell Time</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.00 nm</td>
<td>PrimaryETDetector</td>
<td>100.0 us</td>
<td>11/29/2007</td>
<td>2:31 PM</td>
</tr>
<tr>
<td>Working Dist</td>
<td>Acceleration V</td>
<td>Image Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 mm</td>
<td>29985.0 V</td>
<td>1024x1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Standards:

- Google Search: Standards+nanotechnology+needed
- Returned hundreds of references:
 - PISCATAWAY, N.J., USA, 22 Dec. 2003 The rapid pace of nanotechnology research and the promise of the many applications emerging from it have prompted a broad initiative at the IEEE to create the standards needed to foster this field.
 - The American National Standards Institute's Nanotechnology Standards Panel (ANSI-NSP) serves as the cross-sector coordinating body
- Numerous standards bodies and government laboratories working on this issue
- Numerous NNI workshops discussing standards for Nanotechnology especially for Environment Health and Safety
Standards:
Real World Situation

- Carbon nanotube – two words for many different possible materials
- At least 50 different CNT species have been identified
- Only half of these species are semiconducting
- Current manufacturing processes do not simply make one type of CNT
 - Inherently produce a mixture of CNT species along with 3-60%+ unwanted chemical impurities

MWCNTs 270 tons/yr (245 000 kg/year)
SWCNTs 7 tons/yr (6 350 kg/year)
8 000 US$/kg to 500 000 US$/kg

Matrix: Purity & Structural Properties, SWCNTs

<table>
<thead>
<tr>
<th>Property</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Method</td>
</tr>
<tr>
<td>Morphology</td>
<td>SEM/EDX (Lead: USA)</td>
</tr>
<tr>
<td></td>
<td>TEM (Lead: USA, Co-lead: Japan)</td>
</tr>
<tr>
<td></td>
<td>Raman Spectroscopy (Lead: USA)</td>
</tr>
<tr>
<td></td>
<td>UV-Vis-NIR Absorption (Lead: Japan)</td>
</tr>
<tr>
<td></td>
<td>NIR-PL/Fluorescence (Lead: Japan)</td>
</tr>
<tr>
<td></td>
<td>TGA (Lead: USA, Co-lead: Korea)</td>
</tr>
<tr>
<td></td>
<td>TG-MS (Lead: Japan)</td>
</tr>
<tr>
<td>Purity</td>
<td>Non-carbon impurities</td>
</tr>
<tr>
<td></td>
<td>Tube surface cleanliness</td>
</tr>
<tr>
<td></td>
<td>Nanotube and non-nanotube carbon</td>
</tr>
<tr>
<td></td>
<td>Carbonaceous content (Quantitative)</td>
</tr>
<tr>
<td></td>
<td>Non-carbon content (Quantitative)</td>
</tr>
<tr>
<td></td>
<td>Non-CNT content (Quantitative)</td>
</tr>
<tr>
<td>Length and Diameter</td>
<td>Length and diameter</td>
</tr>
<tr>
<td></td>
<td>Tube diameter, metal cluster size</td>
</tr>
<tr>
<td></td>
<td>Diameter (Lead: Japan)</td>
</tr>
<tr>
<td></td>
<td>Diameter (Lead: Japan)</td>
</tr>
<tr>
<td>Tube Type</td>
<td>Metallic/ Semiconducting</td>
</tr>
<tr>
<td></td>
<td>Metallic/ Semiconducting (Lead: USA, Co-lead: Korea)</td>
</tr>
<tr>
<td></td>
<td>Chirality (Semi conducting tubes)</td>
</tr>
<tr>
<td>Dispersability/Solubility</td>
<td>Tube bundling</td>
</tr>
<tr>
<td></td>
<td>Tub bundling or separation (solution)</td>
</tr>
<tr>
<td></td>
<td>Tube bundling</td>
</tr>
<tr>
<td>Additional</td>
<td>Oxidation/transition temperatures</td>
</tr>
<tr>
<td></td>
<td>Oxidation/transition temperatures</td>
</tr>
</tbody>
</table>

Other Participants
- China
- China, Korea
- Korea
- Korea
- USA
- TBD: Canada and Germany
- China
Residual Catalyst Content in Carbon Nanotube (CNT) Bearing Material

- Cross NIST Laboratory effort
- Collaboration between NIST, NASA, NIOSH, NRC, Univ. of Maryland and Lehigh University
- Product of commerce - as received sample from the manufacturer.
 - Main requirement was minimum of 200 grams of material made in one single process run.
 - Single-walled, closed-ended, carbon nanotubes, made by an evaporative/arc method
 - Packaged in 0.35-0.5 gm
Residual Catalyst Content in Carbon Nanotube (CNT) bearing Material

- Residual catalyst concentrations measured by instrumental neutron activation analysis (INAA) and cold neutron prompt gamma-ray activation analysis (CNPGAA)

Material proved to be too inhomogeneous to be useful as an RM
A new material has been identified and is being pursued

A great many lessons were learned by this work
The data obtained will be published in the near future

- UV, Vis and NIR
- AFM
- etc....
Collaboration between the NCI, FDA, and NIST
- Perform pre-clinical characterization of nanomaterials as drug delivery systems
- Accelerate the use of nanoparticles for drug delivery, as image contrast agents and for diagnosis.

NIST is working to develop quantitative, reproducible measurement methods and protocols for nanotechnology/nanoparticles measurements.
Gold Nanoparticle Size Standard

Reference Material has been released
Gold Nanoparticle Size

Standard RM

RM 8011 - 10 nm
RM 8012 - 30 nm
RM 8013 - 60 nm

Report of Investigation available at:

http://ts.nist.gov/measurementservices/referencematerials/index.cfm
Strategic Alliances Imperative

- Developing effective instrumentation, nanometrology, and nanostandards is not a simple problem to solve.
- Success requires strategic alliances between: Governments, University and Industry.
- Nanotech strong fit for strategic alliances:
 - Multi-disciplinary nature
 - Enabling technology
 - Broad industry implications
 - Federal funding opportunities
 - Commercialization challenges
- Cannot be done alone which leads to the multidimensional nature of nanotechnology…
- ..and the reason for this workshop!
Contact Information

Michael T. Postek, Ph.D.
Chief, Precision Engineering Division
NIST
100 Bureau Drive, Stop 8210
Gaithersburg, MD 20899-8210
postek@nist.gov
Ph: 301-975-2299
The End