National Nanomanufacturing Network

Syndicate content InterNano
InterNano is an open-source online information clearinghouse for the nanomanufacturing research and development (R&D) community in the United States. It is designed provide this community with an array of tools and collections relevant to its work and to the development of viable nanomanufacturing applications.
Updated: 15 hours 38 min ago

Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative ...

July 24, 2014 - 3:53am
The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and Technology Council (NSTC), will hold a public webinar on Thursday, July 31, 2014 from 12 pm to 1 pm EDT. The purpose of this webinar is to provide a forum to answer questions related to the Federal Government's “Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative (NNI) 2011 Environmental, Health, and Safety Research Strategy.” Discussion during the webinar will focus on the research activities undertaken by NNI agencies to advance the current state of the science as highlighted in the progress review. Representative research activities as provided in the Progress Review will be discussed in the context of the 2011 NNI EHS Research Strategy's six core research areas: Nanomaterial Measurement Infrastructure, Human Exposure Assessment, Human Health, the Environment, Risk Assessment and Risk Management Methods, and Informatics and Modeling. A moderator will identify relevant questions and pose them to the panel of NNI agency representatives during the live webinar. Due to time constraints, not all questions may be addressed. The moderator reserves the right to group similar questions and to skip questions, as appropriate. Please send your questions to ( Details: Thursday, July 31, 2014, 12 pm – 1 pm EDTLog in information and event details at ( public copy of the “Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy” can be accessed at ( The 2011 NNI EHS Research Strategy can be accessed at ( Federal Register (

Nano-sized silicon oxide electrode for the next generation lithium ion batteries

July 17, 2014 - 3:15am
The lithium ion battery market has been growing steadily and has been seeking an approach to increase battery capacity while retaining its capacity for long recharging process. Structuring materials for electrode at the nanometre-length scale has been known to be an effective way to meet this demand; however, such nanomaterials would essentially need to be produced by high throughput processing in order to transfer these technologies to industry.This article published in the Science and Technology of Advanced Materials ("High throughput production of nanocomposite SiO x powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries" ( reports an approach which potentially has an industrially compatible high throughputs to produce nano-sized composite silicon-based powders as a strong candidate for the negative electrode of the next generation high density lithium ion batteries. The authors have successfully produced nanocomposite SiO powders by plasma spray physical vapor deposition using low cost metallurgical grade powders at high throughputs. Using this method, they demonstrated an explicit improvement in the battery capacity cycle performance with these powders as electrode.The uniqueness of this processing method is that nanosized SiO composites are produced instantaneously through the evaporation and subsequent co-condensation of the powder feedstock. The approach is called plasma spray physical vapor deposition (PS-PVD). In Fig. 1, raw SiO and PS-PVD SiO composites are shown.The composites are 20 nm particles, which are composed of a crystalline Si core and SiOx shell. Furthermore, the addition of methane (CH4) promotes the reduction of SiO and results in the decreased SiO-shell thickness as shown in Fig. 2. The core-shell structure is formed in a single-step continuous processing.As a result, the irreversible capacity was effectively decreased, and half-cell batteries made of PS-PVD powders have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAhg-1 after 100 cycles at the same time.Source: National Institute for Materials Science

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt. ...

July 9, 2014 - 6:58am
Vantaa, Finland – 9th July 2014: Carbodeon, a Finnish-based producer of functionalised nanodiamond materials, can now achieve a 20 percent increase in polymer thermal performance by using as little as 0.03 wt.% nanodiamond material at 45 percent thermal filler loading, enabling increased performance at a lower cost than with traditional fillers. Last October, Carbodeon published its data on thermal fillers showing that the conductivity of polyamide 66 (PA66) based thermal compound could be increased by 25 percent by replacing 0.1 wt.% of the typically maximum effective level of boron nitride filler (45 wt.%) with the company’s application fine-tuned nanodiamond material. The latest refinements in nanodiamond materials and compound manufacturing allow similar level performance improvements but with 70 percent less nanodiamond consumption and thus, greatly reduced cost. The samples were manufactured at the VTT Technical Research Centre in Finland and their thermal performance was analyzed by ESK (3M) in Germany. “The performance improvements achieved are derived from the extremely high thermal conductivity of diamond, our ability to optimise the nanodiamond filler affinity to applied polymers and other thermal fillers and finally, Carbodeon’s improvements in nanodiamond filler agglomeration control,” said Carbodeon CTO Vesa Myllymäki. “With the ability to control all these parameters, the nanotechnology key paradigm of ‘less gives more’ can truly be realised.” The active surface chemistry inherent in detonation-synthesised nanodiamonds has historically presented difficulties in utilising the potential benefits of the 4-6nm particles, making them prone to agglomeration. Carbodeon optimises this surface chemistry so that the particles are driven to disperse and to become consistently integrated throughout parent materials, especially polymers. The much-promised properties of diamond can thus be imparted to other materials with very low, and hence economic, concentrations. For more demanding requirements, conductivity increases of as much as 100 percent can be achieved using 1.5 percent nanodiamond materials at 20 percent thermal filler loadings. “This increase in thermal conductivity is achieved without affecting the electrical insulation or other mechanical properties of the material and with no or very low tool wear, making it an ideal choice for a wide range of electronics and LED applications,” said Vesa Myllymäki. “We know we have not yet uncovered all the benefits that Carbodeon nanodiamonds can deliver and continue our focused application development on both polymer thermal compounds, and on metal finishing and industrial polymer coatings,” Myllymäki added. “Recently we were granted a patent on nanodiamond-containing thermoplastic thermal composites and we see great future opportunities for these materials.” About Carbodeon Ltd Carbodeon supplies super hard materials for applications where toughness is at a premium. Its patented technologies offer superior opportunities to several fields of business. Its grades of Ultra-Dispersed Diamonds -– also known as NanoDiamonds – possess the desired properties fine-tuned for a growing number of dedicated applications. These grades are sold under the name uDiamond®. Similarly, the company’s Nicanite® graphitic carbon nitride can be converted to carbon nitride thin-film coatings with unique properties. ( Contact: Camille Closs +44 (0)20 8286 0654 Watch PR (

Improved Method of Device Area Scale-up for SWNT/Silicon Hybrid Solar Cells Using Silver Nanowires

July 2, 2014 - 5:57am
While research on silicon solar cells has progressed the development of all organic, inorganic, and hybrid materials systems to simultaneously address the diverse set of design criteria for optimal photovoltaic (PV) performance, incorporation of hybrid materials systems has proven to be an effective method to improve some of these issues. With crystalline silicon representing the standard for high efficiency in solar cell designs, cell cost and production capacity remain concerns for the growing emphasis on broad implementation of renewable energy strategies on a global basis, with solar PV being a leading competitor. With recent studies demonstrating that the approach incorporating p-type nano-Carbon with n-type silicon in a hybrid film approach provides excellent diode junction rectification properties, improved collection and transport efficiencies due to the enhanced conductivity of the nano-C film, and superior semiconductor barrier properties at the nano-C/silicon junction. While this has proven effective for small cell design of a few square millimeters, scaling the cell area has proven challenging due to the increase in sheet resistance (Rs) of the nano-C layer as area increases resulting in a reduction in cell efficiency. Recently, Li,, from the Taylor group in the Chemical and Environmental Engineering Department at Yale University, reported on a approach to significantly improve the performance for scaling up cell area for hybrid single walled carbon nanotubes (SWNT)/Silicon solar cells. In this work, the authors utilized p-type SWNTs cast onto n-type silicon as a dense film approximately 15 nm in thickness. For small cell areas on the order of 1-2 mm2, cell performance was significantly improved in comparison to other hybrid approaches due to the low Rs of the SWNT film. For larger cell areas, the Rs increased substantially to kilo-ohm/square, resulting in decreased cell efficiency. While increasing the SWNT film thickness could potentially lower Rs, the trade-off would be a reduction in optical transparency for the film, which would still reduce cell efficiency during scale-up. Patterning of metal conductor traces over the SWNT film was considered as a means to reduce Rs, but the evaporation of metal over the SWNT film resulted in cell shorting as some of the metal penetrated the pores in the film to the silicon junction. Instead, a strategy of casting silver nanowires (AgNWs) from solution at medium densities was investigated as a means to lower Rs while maintaining reasonable optical transparency during cell area scale-up. Reported results showed that casting of the AgNW films over the SWNT film reduced Rs for the scaled cell structures, and that even with the slight increase in optical absorption with the additive bilayer film, the overall performance of the scaled cells was significantly improved in comparison to the SWNT/Silicon hybrid cell design. The cells exhibited improved fill-factors which were most predominant in enhancing the efficiency, even with slight reductions in open circuit voltage and short circuit current observed for the scaled cell areas. To further improve the optical absorption for the cell, the authors cast titania (TiO2) nanoparticles over the AgNW/SWNT surfaces to reduce reflection and increase forward scattering of incident solar radiation, resulting in a marginal improvement which was further increased via post process steps. This work has developed a solution-based approach to mitigate the total resistive power loss that typically hinders the area scale-up of hybrid nano-C/Si solar cells. A nearly twofold increase of photovoltaic efficiency is observed upon the coating of AgNWs onto SWNT/Si junctions, resulting from the significant reduction in the Rs enabled by the AgNW/SWNT bilayer. The SWNT thin film with high optical transparency and extremely small thickness also allows for the direct solution deposition of antireflective TiO2 nanoparticles. A final efficiency of >10% was realized in 49 mm2 cells, with implications for complete solution processed solar cell manufacturing and ultimately cell cost reduction. The work further illustrates the role and versatility that additive nanostructured films can contribute to performance improvements for cell area scale-up. References: Device Area Scale-Up and Improvement of SWNT/Si Solar Cells Using Silver Nanowires ( Xiaokai Li, Yeonwoong Jung, Jin-Shun Huang, Tenghooi Goh, and André D. Taylor; Advanced Energy Materials 2014. DOI: 10.1002/aenm.201400186 ( Images reprinted with permission from John Wiley and Sons; Advanced Energy Materials; Device Area Scale-Up and Improvement of SWNT/Si Solar Cells Using Silver Nanowires; © 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim; Xiaokai Li,Yeonwoong Jung,Jing-Shun Huang,Tenghooi Goh,André D. Taylor.

Researchers Develop Novel Way to Waterproof Materials by Adding Exterior Surface Grooves

July 1, 2014 - 4:20am
Researchers from Kyoto University in Japan have developed a novel way to waterproof new functionalized materials involved in gas storage and separation by adding exterior surface grooves. Their study, published in the journal Angewandte Chemie, provides a blueprint for researchers to build similar materials involved in industrial applications, such as high performance gas separation and energy storage.

Nanotechnology Impact on Manufacturing Innovation for Next Round of Institutes

June 26, 2014 - 8:49am
A recent Request for Information (RFI) disseminated by the Department of Defense (DoD) solicits input from Industry and Academia as part in order to better understand the state-of-the-art, needs, and potential market and economic impact for future Institutes for Manufacturing Innovation (IMIs). These institutes are consortium-based Public Private Partnerships enabling the scale-up of advanced manufacturing technologies and processes with the goal of successful transition of existing science and technology into the marketplace for both Defense and commercial applications. The IMI will be led by a not-for-profit organization and focus on one technology area. DoD is seeking responses which will assist in the selection of a technology focus area from those currently under consideration.

2014 NACK Network Nanotechnology Workshops

June 25, 2014 - 10:10am
The Nanotechnology Applications and Career Knowledge (NACK) Network ( has announced its late summer and fall 2014 offerings of the NACK Nanotechnolgy Resource and Hands-On Introduction to Nanotechnology Workshops, held at the Center for Nanotechnology Education and Utilization (CNEU) at Penn State University.The Course Resource Workshops series consists of two workshops designed to provide the resources needed to effectively teach undergraduate nanotechnology courses based upon the NACK suite of six nanotechnology courses. They can be attended in any order to meet the needs and schedules of the workshop participants.The next Course Resource Workshop offering will be the August 11-14 offering of Nanotechnology Course Resources II: Patterning, Characterization Applications. This workshop will focus on the second set of courses in the 6 course suite: (4) Patterning for Nanotechnology, (5) Materials Modification for Nanotechnology Applications, and (6) Characterization, Testing of Nanotechnology Structures and Materials. (NOTE: This workshop will be offered again on October 6-9. Their April 2014 Course Resource I workshop was very successful with representatives of educational institutions from 7 states in attendance. This workshop Nanotechnology Course Resources I: Safety, Processing Materials will again be offered September 15-18. This workshop focuses on the first set of courses in the 6 course suite: (1) Materials, Safety, and Equipment Overview, (2) Basic Nanotechnology Processes, and (3) Materials in Nanotechnology. Our Hand-On Introduction to Nanotechnology Workshop will be offered for the second time this year November 11-13, 2014. This workshop presents an overview of the world of nanotechnology. Participants will learn about the growing applications of nano in industry and about nanofabrication processes and tools. All workshops have hands-on lab activities in cleanrooms at Penn State. Financial support to attend the workshops is available! The support covers the registration fee, travel expenses, and lodging. The form to apply for financial support is included with along with the workshop applications. NACK has had some very nice feedback on the workshop from past participants. Below is a sampling of attendee feedback from their recent workshop experiences: “You guys are an inspiration. Penn State is a leader in nanotechnology instruction. Keep up the good work!!!” “The labs were fantastic.” “Overall this workshop is awesome and great!” “The workshop was fantastic. I gained a valuable understanding of nanofabrication and applications.” “Excellent overall. Lecture/Lab format was the best.” “The staff and faculty at this workshop are great and very helpful.” “This was an awesome workshop. I learned so much and hope I can get our students as excited as I am.” “I was very impressed with the workshop. I learned a tremendous amount.” “It was very valuable – learned a lot on the basics of vacuum technology in much more detailed and comprehensive manner… remote sensing and learning to use it was equally valuable.” “This workshop was probably the best I have ever attended! Excellent job.” For more detailed information about the workshops (as well as a word version of the applications) refer to our website at ( Please apply as soon as possible for these upcoming workshops as spaces fill up quickly. The application period for the August workshop closes on June 30, 2014.Source: NACK

Graphene Flagship initiative doubles in size

June 25, 2014 - 9:50am
To coincide with Graphene Week 2014 (, the Graphene Flagship ( is proud to announce that today one of the largest-ever European research initiatives is doubling in size. 66 new partners are being invited to join the consortium following the results of a €9 million competitive call. While most partners are universities and research institutes, the share of companies, mainly SMEs, involved is increasing. This shows the growing interest of economic actors in graphene. The partnership now includes more than 140 organisations from 23 countries. It is fully set to take ‘wonder material’ graphene and related layered materials from academic laboratories to everyday use. Vice-President of the European Commission @NeelieKroesEU (, responsible for the Digital Agenda (, welcomed the extended partnership: “Europe is leading the graphene revolution. This ‘wonder material has the potential dramatically to improve our lives: it stimulates new medical technologies, such as artificial retinas, and more sustainable transport with light and ultra-efficient batteries. The more we can unlock the potential of graphene, the better!” SMEs on the Rise The 66 new partners come from 19 countries, six of which are new to the consortium: Belarus, Bulgaria, the Czech Republic, Estonia, Hungary and Israel. With its 16 new partners, Italy now has the highest number of partners in the Graphene Flagship alongside Germany (with 23 each), followed by Spain (18), UK (17) and France (13). The incoming 66 partners will add new capabilities to the scientific and technological scope of the flagship. Over one third of new partners are companies, mainly SMEs, showing the growing interest of economic actors in graphene. In the initial consortium this ratio was 20%. Big Interest in Joining the Initiative The €9 million competitive call of the €54 million ramp-up phase (2014-2015) attracted a total of 218 proposals, representing 738 organisations from 37 countries. The proposals received were evaluated on the basis of their scientific and technological expertise, implementation and impact (further information on the call ( and ranked by an international panel of leading experts, mostly eminent professors from all over the world. 21 proposals were selected for funding. Prof. Jari Kinaret, Professor of Physics at the Chalmers University of Technology (, Sweden, and Director of the Graphene Flagship, said: “The response was overwhelming, which is an indicator of the recognition for and trust in the flagship effort throughout Europe. Competition has been extremely tough. I am grateful for the engagement by the applicants and our nearly 60 independent expert reviewers who helped us through this process. I am impressed by the high quality of the proposals we received and looking forward to working with all the new partners to realise the goals of the Graphene Flagship.” Europe in the Driving Seat Graphene was made and tested in Europe, leading to the 2010 Nobel Prize in Physics for Andre Geim and Konstantin Novoselov from the University of Manchester. With the €1 billion Graphene Flagship, Europe will be able to turn cutting-edge scientific research into marketable products. This major initiative places Europe in the driving seat for the global race to develop graphene technologies. Prof. Andrea Ferrari, Director of the Cambridge Graphene Centre ( and Chair of the Executive Board of the Graphene Flagship commented today’s announcement on new partners: “This adds strength to our unprecedented effort to take graphene and related materials from the lab to the factory floor, so that the world-leading position of Europe in graphene science can be translated into technology, creating a new graphene-based industry, with benefits for Europe in terms of job creation and competitiveness”. Background The Graphene Flagship @GrapheneCA ( represents a European investment of €1 billion over the next 10 years. It is part of the Future and Emerging Technologies (FET) Flagships ( @FETFlagships ( src=typd) announced by the European Commission in January 2013 (press release ( The goal of the FET Flagships programme is to encourage visionary research with the potential to deliver breakthroughs and major benefits for European society and industry. FET Flagships are highly ambitious initiatives involving close collaboration with national and regional funding agencies, industry and partners from outside the European Union. Research in the next generation of technologies is key for Europe’s competitiveness. This is why €2.7 billion will be invested in Future and Emerging Technologies (FET) ( under the new research programme Horizon 2020 ( #H2020 (2014-2020). This represents a nearly threefold increase in budget compared to the previous research programme, FP7. FET actions are part of the Excellent science ( pillar of Horizon 2020.Source: Graphene Flagship (

FDA issues guidance to support the responsible development of nanotechnology products

June 25, 2014 - 9:42am
Today, three final guidances and one draft guidance were issued by the U.S. Food and Drug Administration providing greater regulatory clarity for industry on the use of nanotechnology in FDA-regulated products.One final guidance addresses the agency’s overall approach for all products that it regulates, while the two additional final guidances and the new draft guidance provide specific guidance for the areas of foods, cosmetics and food for animals, respectively. Nanotechnology is an emerging technology that allows scientists to create, explore and manipulate materials on a scale measured in nanometers—particles so small that they cannot be seen with a regular microscope. The technology has a broad range of potential applications, such as improving the packaging of food and altering the look and feel of cosmetics.“Our goal remains to ensure transparent and predictable regulatory pathways, grounded in the best available science, in support of the responsible development of nanotechnology products,” said FDA Commissioner Margaret A. Hamburg, M.D. “We are taking a prudent scientific approach to assess each product on its own merits and are not making broad, general assumptions about the safety of nanotechnology products.”The three final guidance documents reflect the FDA’s current thinking on these issues after taking into account public comment received on the corresponding draft guidance documents previously issued (draft agency guidance in 2011; and draft cosmetics and foods guidances in 2012). The FDA does not make a categorical judgment that nanotechnology is inherently safe or harmful, and will continue to consider the specific characteristics of individual products. All four guidance documents encourage manufacturers to consult with the agency before taking their products to market. Consultations with the FDA early in the product development process help to facilitate a mutual understanding about specific scientific and regulatory issues relevant to the nanotechnology product, and help address questions related to safety, effectiveness, public health impact and/or regulatory status of the product.The guidances are: FDA (

Novel nanoparticle production method could lead to better lights, lenses, solar cells

June 18, 2014 - 9:39am
Sandia National Laboratories has come up with an inexpensive way to synthesize titanium-dioxide nanoparticles and is seeking partners who can demonstrate the process at industrial scale for everything from solar cells to light-emitting diodes (LEDs). Titanium-dioxide (TiO2) nanoparticles show great promise as fillers to tune the refractive index of anti-reflective coatings on signs and optical encapsulants for LEDs, solar cells and other optical devices. Optical encapsulants are coverings or coatings, usually made of silicone, that protect a device. Industry has largely shunned TiO2 nanoparticles because they’ve been difficult and expensive to make, and current methods produce particles that are too large. Sandia became interested in TiO2 for optical encapsulants because of its work on LED materials for solid-state lighting.Current production methods for TiO2 often require high-temperature processing or costly surfactants — molecules that bind to something to make it soluble in another material, like dish soap does with fat. Those methods produce less-than-ideal nanoparticles that are very expensive, can vary widely in size and show significant particle clumping, called agglomeration. Sandia’s technique, on the other hand, uses readily available, low-cost materials and results in nanoparticles that are small, roughly uniform in size and don’t clump. “We wanted something that was low cost and scalable, and that made particles that were very small,” said researcher Todd Monson, who along with principal investigator Dale Huber patented the process in mid-2011 as Laboratory Directed Research and Development ( project Huber began in 2005. “The original project goals were to investigate the basic science of nanoparticle dispersions, but when this synthesis was developed near the end of the project, the commercial applications were obvious,” Huber said. The researchers subsequently refined the process to make particles easier to manufacture. Existing synthesis methods for TiO2 particles were too costly and difficult to scale up production. In addition, chemical suppliers ship titanium-dioxide nanoparticles dried and without surfactants, so particles clump together and are impossible to break up. “Then you no longer have the properties you want,” Monson said. The researchers tried various types of alcohol as an inexpensive solvent to see if they could get a common titanium source, titanium isopropoxide, to react with water and alcohol. The biggest challenge, Monson said, was figuring out how to control the reaction, since adding water to titanium isopropoxide most often results in a fast reaction that produces large chunks of TiO2, rather than nanoparticles. “So the trick was to control the reaction by controlling the addition of water to that reaction,” he said. Textbooks said making nanoparticles couldn’t be done, Sandia persisted Some textbooks dismissed the titanium isopropoxide-water-alcohol method as a way of making TiO2 nanoparticles. Huber and Monson, however, persisted until they discovered how to add water very slowly by putting it into a dilute solution of alcohol. “As we tweaked the synthesis conditions, we were able to synthesize nanoparticles,” Monson said. The next step is to demonstrate synthesis at an industrial scale, which will require a commercial partner. Monson, who presented the work at Sandia’s fall Science and Technology Showcase (, said Sandia has received inquiries from companies interested in commercializing the technology. “Here at Sandia we’re not set up to produce the particles on a commercial scale,” he said. “We want them to pick it up and run with it and start producing these on a wide enough scale to sell to the end user.” Sandia would synthesize a small number of particles, then work with a partner company to form composites and evaluate them to see if they can be used as better encapsulants for LEDs, flexible high-index refraction composites for lenses or solar concentrators. “I think it can meet quite a few needs,” Monson said.Source: Sandia National Laboratories (

New nanocomposite protects from corrosion at high mechanical stress

June 11, 2014 - 5:48am
Material researchers at the INM – Leibniz Institute for New Materials will be presenting a composite material which prevents metal corrosion in an environmentally friendly way, even under extreme conditions. It can be used wherever metals are exposed to severe weather conditions, aggressive gases, media containing salt, heavy wear or high pressures.The INM from Saarbruecken will be one of the few German research institutions at the TechConnect World trade fair on 16 and 17 June in Washington DC, USA, where it will be presenting this and other results. Working in cooperation with the VDI Association of German Engineers it will be showcasing its latest developments at Stand 301 in the German Area.“This patented composite exhibits its action by spray application”, explains Carsten Becker-Willinger, Head of the Nanomers Program Division. “The key is the structuring of this layer - the protective particles arrange themselves like roof tiles. As in a wall, several layers of particles are placed on top of each other in an offset arrangement; the result is a self-organized, highly structured barrier”, says the chemical nanotechnology expert. The protective layer is just a few micrometers thick and prevents penetration by gases and electrolytes. It provides protection against corrosion caused by aggressive aqueous solutions, including for example salt solutions such as salt spray on roads and seawater, or aqueous acids such as acid rain. The protective layer is an effective barrier, even against corrosive gases or under pressure. After thermal curing, the composite adheres to the metal substrate, is abrasion-stable and impact-resistant. As a result, it can withstand high mechanical stress. The coating passes the falling ball test with a steel hemispherical ball weighing 1.5 kg from a height of one meter without chipping or breaking and exhibits only slight deformation, which means that the new material can be used even in the presence of sand or mineral dust without wear and tear.The composite can be applied by spraying or other commonly used wet chemistry processes and cures at 150-200°C. It is suitable for steels, metal alloys and metals such as aluminum, magnesium and copper, and can be used to coat any shape of plates, pipes, gear wheels, tools or machine parts. The specially formulated mixture contains a solvent, a binder and nanoscale and platelet-like particles; it does not contain chromium VI or other heavy metals.Source: INM - Leibniz-Institut für Neue Materialien

NanoBCA Interview with Nanotech Pioneer Dr. Malcolm Gillis

June 4, 2014 - 7:57am
Dr. Malcolm Gillis, a distinguished economist, served as President of Rice University from 1993 to 2004 and has been at the forefront of international research collaboration, working with Lord David Sainsbury when he was Minister for Science, to pioneer a truly international approach between the leading research academics working in nano science in the U.S., U.K. and Europe at leading research institutions. His upcoming lecture, “Convergences in Technologies: Nano Bio and Info” on June 3, 2014, will be held at The Royal Institution of Great Britain (, 21 Albemarle Street, London W1S 4BS, starting at 7:00 pm. To reserve tickets, please submit request to ( NanoBCA Please tell us about the genesis of your upcoming lecture concerning the convergence of Nano, Bio and Info. Dr. Gillis This will be the latest in a long series of lectures I have given over the last two decades about the promise of nanotechnology. My involvement in nano at Rice during that exciting time when Dr. Richard Smalley’s team was conducting extraordinary work, and my subsequent involvement in the nano community has afforded me the ability to observe progress and trends not only in the U.S. but worldwide. During that time, I have had the good opportunity to engage with leaders in the field in Germany, Ireland, Scotland and England, among others. It’s been an enlightening and inspiring journey for me. The goal of the upcoming lecture is to educate the general public, and to start a dialogue with a broader array of stakeholders, of the extraordinary possibilities that are borne at the intersection nano, bio, and information technologies. NanoBCA How did you come to work with Lord Sainsbury and what are the specific outcomes for the U.K. and Texas nano communities? Dr. Gillis I first met Lord Sainsbury in the late 1990s on a trip to the U.K. to give a lecture at the Royal Academy in Edinburgh, after which Lord Sainsbury and I met in London to explore potential collaborations in the field of nanotechnology. I remember being struck by how extremely well prepared he was on the subject. In just thirty minutes time, we were able to agree and establish the Nano Bio Collaborative on Research which involved eight British universities and ten Texas research universities. The Collaborative launched in 2002. Lord Sainsbury provided several million pounds to the effort. The Collaborative was extremely successful and lasted for ten years. NanoBCA The 21st Century Nanotechnology R D Act was signed into law by President Bush in December of 2003. Since then, the U.S. Government has spent approximately $20 billion on nanotechnology R D. This investment was spread over 9 major U.S. agencies. What do you believe are some of the major accomplishments as they relate to nanobio? Dr. Gillis There have been so many notable achievements. Too many to cover here but let me mention a few that stand out in my mind. There was a $2.9 million grant from NIH to fund research at Rice and Baylor College of Medicine for neuro-vascular regeneration which has generated great results in that field. Another grant was provided in the amount of £6.7 million from BPSRC for research at University College London and Swansea for research in interactive medical devices. The Center of Nano Health was established in Wales with a£1.9 million grant from BPSRC. And there were another eight or so grants in the range of $30 million for funding other areas of research. You mention the signing of the 21st Century Nanotechnology R D Act in 2003. Neal Lane, who is at Rice with me, and was the former Provost at Rice and former head of the NSF was very instrumental in getting that legislation passed. That legislation set in motion four generations of evolution in nano: first, the immediate effect of moving from prior-2000 (buckeyballs and nanotubes) to 2nd generation (2000-2005) of more active nanoparticles, and 3rd and now 4th. The National Nanotechnology Initiative was absolutely instrumental. According a recent article in the journal Nature Nanotechnology, there are now some 507 nanotech firms worldwide. Two-thirds of those are small firms, which is where a lot of truly great innovation occurs. NanoBCA Often we hear a variety of different opinions about the definition of “nanotechnology.” What’s your opinion? Dr. Gillis From my perspective, the definition of nanotechnology is broad and includes many biological innovations, because most anything that goes on in a human cell is “nature’s nanotechnology.” NanoBCA One of the participating agencies of the NNI is the NIH. What are some breakthroughs we can expect from NIH in the next 5-10 years? Dr. Gillis There have been some very significant advances in therapy and diagnostics which will continue to deliver tremendous results in the years ahead. For instance, novel techniques developed at Rice and other places that allow for the use of gold nanoshells to kill cancer cells. Also, advances that allow targeted delivery of cancer drugs to a single cell. Breakthroughs in early cancer cell detection will have a profound impact. Unfortunately, due to woes in the federal budget, prospects for increased funding for NIH are not bright and will limit the possibility of breakthroughs. However, we will certainly continue to see breakthroughs in cancer treatment, biomarkers and tissue engineering. Lab-on-a-chip is also coming close to a reality. Human tissues married with nanowires create a type of cyborg tissue that might enable doctors to monitor changes in human tissue not imagined before. And, there are remarkable developments in building living tissue with 3D printing technologies. Genomics has already given us a complete parts list for humans. New advances in nano-bio-IT provide us with the extensive capability to manmake these parts. In conclusion, the big picture for future breakthroughs is that most of these advances are the product of the convergence of nano, bio and information technologies. That convergence is a powerful force for innovation. That will be the focus of my lecture in London on June 3rd. NanoBCA Dr. Gillis, thank you for your time and tremendous insight. Good luck in London! Thank you Dr. Gillis for your contributions to the nano community over the last decade.

Nanomaterials for Personal and Environmental Protection: Combating Air Pollution Using Nanofibers

May 30, 2014 - 3:25am
Theuse of nanotechnology for effective filtration of contaminants, ions, or toxicparticles from water and air sources has been demonstrated at various levelsnow for well over a decade. As methods to scale technologies for industrialapplication through emerging nanomanufacturing methodologies have matured inrecent years, an emerging focus has been the development of personal protectiongarments, textiles, and equipment based on nanostructured materials that canadsorb or filter potential contaminants based on size of ionic charge or particles.Similarly, antimicrobial/antibacterial surfaces can be created by tailoring thesurface morphology and functionality nanostructured materials to effectivelycapture or immobilize the microbes, and have shown superior properties incomparison to other approaches in part by way of the ultrahigh surface area ofsuch materials. Examples that have previously been reported on InterNanoinclude silver nanowires, carbon nanotubes, and woven nanofibers. Single walledcarbon nanotubes (SWNTs) for example have exhibited unprecedented properties interms of water transport with size dependent ion and heavy metal exclusion onthe order of 1-2 nm. SWNTs are also the foundation for wearable protectivesuites for first responders (, that enablebreathability while also enabling other functionalities such as the sensing of chem/biothreats, isolating the wearer from the threat, and then providing breathabilityonce the threat has been mitigated. While such functionally reactive protectivegarments are still in development, nearer term technology impact utilizing highsurface area nanoporous or nanofiber materials are already at hand. One of the the challenges for personal protection equipment (PPE) garments is the need toprovide breathability. Recently, nanofibers have been demonstrated to providecompetitive or superior performance for filtration of pollutants and possibletoxic particulate matter for protective masks. “R D Magazine reports theuse of nanofiber face masks developed by Hong Kong Polytechnic University totrap the most harmful air pollutants at PM 2.5 (2.5 microns) and smaller. Dr.Leung and his team have developed effective filters that also allow adequateair-flow for respiration.”, reports Alan Rae in a recent expert commentary toInterNano. Theuse of nanofibers in a textile-like filter allows sufficient air-flow forrespiration for continuous wearability while demonstrating effective filtrationof particulate to the micron scale, and partial filtration of particles down tothe 100 nm scale. Further developments in this area would anticipateimprovements to enable effective screening of nanoscale pollutants. In thisparadigm, nanomaterials provide a significant societal benefit addressing theneed for both workforce and public safety while enabling PPE concepts withunique and superior performance. In addition, scaled nanomanufacturing willultimately affect new markets for application of such materials that requirechallenging form factors, assembly, or integration with other functionalities.The NNN looks forward to future reporting of such technology demonstrations andcommercialization.

University of Massachusetts Amherst Purchases Nanonex Advanced 8” Nanoimprint Tool NX-2608BA

May 29, 2014 - 3:38am
It features all imprint forms: thermal, photo-curable, and embossing, with sub-5 nm imprinting resolution, up to 8 inches wafer size. Based on the Nanonex unique patented Air Cushion PressTM technology, the NX-2608BA offers unsurpassed uniformity regardless of backside topology, wafer or mask flatness, or backside contamination. This ACP technology also eliminates lateral shifting between the mask and substrate, which significantly increases mask lifetime. The small thermal mass design allows fast thermal cycling, resulting in a fast process cycle. The new NX-2600BA system is the second Nanonex nanoimprint equipment purchased by UMass Amherst. Both Nanonex nanoimprint systems will be located at the new UMass Life Sciences Center at UMass Amherst to support the center’s multidisciplinary research, that include nanoimprint material and processing, nanoimprint mold fabrication and duplication, roll-to-roll nanoimprint, bio/chemical sensors, etc. Nanonex ( is excited to supply the cutting-edge nanoimprint tool to UMass Amherst’s new Life Sciences Center.Source: Nanonex (

NanoBCA News – Recap of 12th Annual DC Roundtable

May 28, 2014 - 7:01am
2014 has become a banner year for the nanotechnology community. We have seen M A, liquidity exits and new start-ups joining our nanotechnology community! On May 6-7th we completed our K L Gates ( with a presentation by Paul Stimers, Partner of K L Gates and NanoBCA Public Policy Advisor. We proceeded to Capitol Hill to the Dirksen Senate Office Building where we heard presentations from NanoBCA Legacy Foundation members, Graphene Stakeholders Association ( members and new NanoBCA members. Scott Rickert, Ph.D., CEO of Nanofilm ( and Director of PEN, Inc., began the private sector presentations with the announcement of the future activities of Nanofilm and PEN, Inc ( NanoBCA Legacy member, Jess Jankowski, CEO of Nanophase ( – NANX, updated us on recent successes. Nanophase is committed to building a company that offers value and transparency to its shareholders. Jim Phillips, Chairman/CEO of NanoMech (, Inc. updated us on the emerging markets and their recent Edison Award ( Congratulations to Jim, Ajay and the NanoMech Team. Anil Diwan, Ph.D., President Chairman of NanoViricides, Inc ( – NNVC, gave a presentation announcing their expansion into a 20,000 sq. ft. facility. NanoViricides won the IAIR Award ( as Best North American Company for Leadership in the Nanomedicine Sector. Craig Bandes, President CEO of Pixelligent Technologies ( shared with the community their recent successes ( The Pixelligent story, with Craig at the helm, is the greatest come-back story of any company from our nano community. Congratulations to Craig and his team! We heard two presentations from Graphene Stakeholders Association members, Mike Patterson, CEO of Graphene Frontiers ( and Gary Economo, CEO of Grafoid (, discussing the markets for their products. Next up were three presentations from new NanoBCA members: Mark Shaw, CEO of UltraTech International (; Carleton Hsia, Ph.D., Chairman CEO, NanoBlood LLC (; and Matthew Putman, CEO of Nanotronics Imaging ( Rounding out the morning we had in-depth presentations from: Lynn L. Bergeson, Managing Partner of Bergeson Campbell ( P.C. and NanoBCA EHS Chairperson, offering her guidance on EHS (; Dr. Gilberto M. (Ybet) Villacorta, Chair of the Intellectual Property Department of the Washington, DC Office of Foley Lardner ( LLP, discussing the importance of Intellectual Property (; William Morris, CEO/Chairman, Emerging Technologies Ventures, LLC, spoke about investing in companies specializing in commercializing nanotechnology products. I would like to thank Foley Lardner, LLP, NanoBCA Legacy member, for the use of their conference center on Wednesday, May 7th. Dr. Gilberto M. (Ybet) Villacorta kicked off our Wednesday session observing the past and looking at future trends in the nanotechnology community. Next, we had comprehensive presentations from the following government officials: - Dr. Mihail C. Roco (, Senior Advisor for Nanotechnology, National Science Foundation - Dr. Altaf (Tof) Carim (, Assistant Director for Nanotechnology, Office of Science and Technology Policy, Executive Office of the President - Lloyd Whitman (, Interim Director, NNCO - Robert J. Celotta (, Director, CNST, Center Office Lastly, our final set of speakers on Wednesday were the following: - Governor George F. Allen (, Then, Senator Allen was the co-sponsor of the National Nanotechnology Initiative legislation in 2003. - Mostafa Analoui, Ph.D. (, Head of Healthcare and Life Sciences, Livingston Securities. Mostafa updated us on the biotechnology industry. - The Honorable Kelly H. Carnes (, President CEO, TechVision21. As the Assistant Secretary of Commerce for Technology Policy, Kelly Carnes addressed many high-profile technology issues, including Federal R D, innovation and competiveness policy. Kelly’s presentation explained the current R D environment. - Philip H. Lippel, Ph.D., ( Assistant Director, MIT Washington Office. Phil highlighted advanced manufacturing activities at MIT.

U.S. Government Accountability Office Issues New Report on Nanomanufacturing and U.S. ...

May 28, 2014 - 6:47am
The U.S. Government Accountability Office (GAO) published its report Nanomanufacturing and U.S. Competitiveness: Challenges and Opportunities ( in May 2014. What GAO Found Forum participants described nanomanufacturing as an emerging set of developments that will become a global megatrend: a technological revolution that is now in its formative phases but that many knowledgeable persons—in science, business, and government—expect to burgeon in the years ahead, bringing new opportunities, “disruptive innovation,” jobs creation, and diverse societal benefits. They said that the United States likely leads in sponsorship and overall quality of nanotechnology R D today as well as some areas of nanomanufacturing—for example, nanotherapeutic drug development and the design of semiconductor devices. But they cautioned that the United States faces global-scale competition and is struggling to compete in some industry areas (notably, advanced batteries). Challenges facing U.S. nanomanufacturing include (1) a key U.S. funding gap in the middle stages of the manufacturing-innovation process, as illustrated below; (2) lack of commercial or environmental, safety, and health (EHS) standards; (3) lack of a U.S. vision for nanomanufacturing; (4) extensive prior offshoring in some industries, which may have had unintended consequences; and (5) threats to U.S. intellectual property. Key actions identified by our experts to enhance U.S. nanomanufacturing competitiveness include one or more of the following: (1) strengthen U.S. innovation by updating current innovation-related policies and programs, (2) promote U.S. innovation in manufacturing through public-private partnerships, and (3) design a strategy for attaining a holistic vision for U.S. nanomanufacturing. Key policy issues identified by our experts include the development of international commercial nanomanufacturing standards, the need to maintain support for basic research and development in nanotechnology, and the development of a revitalized, integrative, and collaborative approach to EHS issues. Why GAO Did This Study Nanotechnology has been defined as the control or restructuring of matter at the atomic and molecular levels in the size range of about 1–100 nanometers (nm); 100 nm is about 1/1000th the width of a hair. The U.S. National Nanotechnology Initiative (NNI), begun in 2001 and focusing primarily on R D, represents a cumulative investment of almost $20 billion, including the request for fiscal year 2014. As research continues and other nations increasingly invest in R D, nanotechnology is moving from the laboratory to commercial markets, mass manufacturing, and the global marketplace. Today, burgeoning markets and nanomanufacturing activities are increasingly competitive in a global context—and the potential EHS effects of nanomanufacturing remain largely unknown. GAO was asked to testify on challenges to U.S. competitiveness in nanomanufacturing and related issues. Our statement is based on GAO's earlier report on the Forum on Nano-manufacturing, which was convened by the Comptroller General of the United States in July 2013 (GAO 2014; also referred to as GAO-14-181SP ( ). That report reflects forum discussions as well as four expert-based profiles of nano-industry areas, which GAO prepared prior to the forum and which are appended to the earlier report. For more information, contact Timothy Persons, Chief Scientist, at (202) 512-6412 or (

Check Out the Assembly Line of the Future!

May 21, 2014 - 4:35am
There's no shortage of ideas about how to use nanotechnology, but one of the major hurdles is how to manufacture some of the new products on a large scale. With support from the National Science Foundation (NSF), University of Massachusetts (UMass) Amherst chemical engineer Jim Watkins and his team are working to make nanotechnology more practical for industrial-scale manufacturing.

Protecting Workers in Nanotechnology Industries

May 14, 2014 - 10:02am
The National Institute for Occupational Safety and Health (NIOSH) has updated its report Protecting the Nanotechnology Workforce: NIOSH Nanotechnology Research and Guidance Strategic Plan, 2013–2016 ( This plan updates the November 2009 strategic plan with knowledge gained from results of ongoing research, as described in the 2012 report Filling the Knowledge Gaps for Safe Nanotechnology in the Workplace: A Progress Report from the NIOSH Nanotechnology Research Center, 2004–2011. The NIOSH Nanotechnology Research Program follows a comprehensive plan that is managed as a matrix structure across NIOSH and supports multiple sectors in the National Occupational Research Agenda (NORA).

SEMATECH Achieves Breakthrough Defect Reductions in EUV Mask Blanks

May 7, 2014 - 6:16am
SEMATECH announced today that researchers have reached a significant milestone in reducing tool-generated defects from the multi-layer deposition of mask blanks used for extreme ultraviolet (EUV) lithography, pushing the technology another significant step toward readiness for high-volume manufacturing (HVM). Following a four-year effort to improve deposition tool hardware, process parameters and substrate cleaning techniques, technologists at SEMATECH have, for the first time, deposited EUV multilayers with zero defects per mask at 100 nm sensitivity (SiO2 equivalent). Eliminating these large “killer” defects is essential for the use of EUV in early product development. These results were achieved on a 40 bi-layer Si/Mo film stack and measured over the entire mask blank quality area of 132×132 mm2. In addition, by subtracting out incoming substrate defects, SEMATECH has demonstrated that the multilayer deposition process itself can achieve zero defects down to 50 nm sensitivity. Coupled with novel improvements to the mask substrate cleaning process to remove incoming defects, this represents the capability to both extend EUV to future nodes by eliminating smaller “killer” defects, and as a step to reducing smaller defects (which can be mitigated) to a level where improved yield and mask cost make EUV a more cost-effective HVM technology. “SEMATECH’s comprehensive programs continue to produce the results that our members and the industry need to show that EUV lithography is manufacturable,” said Kevin Cummings, SEMATECH’s Lithography manager. “Our Advanced Mask Development program continues to demonstrate practical results for mask blank defect reduction, more efficient deposition and cleaning, effective reticle handling, and other areas that the industry will need for successful EUV lithography manufacturing.” Defects are generally created by the deposition process or formed by decoration of substrate defects during the multilayer deposition process. These types of defects have prevented the quality of mask blanks from keeping pace with roadmap requirements for the production of pilot line and high-volume manufacturing EUV reticles. Reducing defects in the EUV mask blank multilayer deposition system is one of the most critical technology gaps the industry needs to address to enable cost-effective insertion of this technology at the 16 nm half-pitch. “A low defect density reflective mask blank is considered to be one of the top two critical technology gaps for the commercialization of EUV,” said Frank Goodwin, manager of SEMATECH’s Advanced Mask Development program. “Through sophisticated defect analysis capabilities and processes, the goal of our work is to enable model-based prediction and data-driven analysis of defect performance for process improvement and component learning. We then use these models to feed into the new deposition tool design.” SEMATECH's Advanced Mask Blank Development program is located at the SUNY College of Nanoscale Science and Engineering (CNSE) in Albany, New York to develop defect-free EUV blanks.Source: SEMATECH Inc. (

New MIT Building will be a Hub for Nanoscale Research

April 30, 2014 - 10:49am
Starting in 2018, researchers from across MIT will be able to take advantage of comprehensive facilities for nanoscale research in a new building to be constructed at the very heart of the Cambridge campus. The 200,000-square-foot building, called "MIT.nano," will house state-of-the-art cleanroom, imaging, and prototyping facilities supporting research with nanoscale materials and processes - in fields including energy, health, life sciences, quantum sciences, electronics, and manufacturing. An estimated 2,000 MIT researchers may ultimately make use of the building, says electrical engineering professor Vladimir Bulović, faculty lead on the MIT.nano project and associate dean for innovation in the School of Engineering.