National Nanomanufacturing Network

Syndicate content InterNano
InterNano is an open-source online information clearinghouse for the nanomanufacturing research and development (R&D) community in the United States. It is designed provide this community with an array of tools and collections relevant to its work and to the development of viable nanomanufacturing applications.
Updated: 1 day 3 hours ago

NanoBCA Interview: Harry Bushong, President, Nano Risk Assessment International, Ltd.

May 7, 2015 - 4:50am
The NanoBCA is pleased to share the following interview with Harry Bushong, a long-time member of our community and a pioneer and staunch advocate for nanosafety. The NanoBCA has always kept the topic of nanotech EHS (Environment Health Safety) at the forefront of its agenda and has strived to keep the community informed and engaged on this very important topic. NanoBCA Nano Risk Assessment International, Ltd. was the first risk assessment firm focused on nanosafety. Can you tell us how your business has evolved over the years and describe its focus today as well as that of the sister companies that it is affiliated with? Mr. Bushong Nano Risk Assessment International, Ltd. was indeed the first firm dedicated to providing nanosafety services. It’s hard to believe, but we’ve just marked our tenth anniversary. It’s been quite a ride and the landscape has changed dramatically over that time. To answer your question, I’ll describe briefly how we’ve evolved as a company, or rather I should say “a group of companies”, and what our focus is today. We started in Texas as a single company, nanoTox, Inc., focused on providing safety consulting services to nanomaterials companies in the U.S. Our headquarters remains in Texas to this day. However, as the demands for our services have evolved and the needs of our customers changed, we gradually expanded to be a group of companies with a worldwide reach and a more diversified array of services which include customized research support, government compliance, safety data design and collection, IP assessment, insurance assessment, and manufacturing scale-up. Along the way, we’ve established or acquired several business units that all now fall under our international umbrella organization, Nano Risk Assessment International, Ltd., (“nRai”) which is incorporated in the UK. We continue to provide nanosafety services to clients worldwide, including Fortune 500 companies, smaller to midscale companies, and universities. We have a division in Dublin, Ireland, nTI, which is affiliated with the Center for BioNano Interactions at the University College Dublin. nTI develops proprietary analytical procedures and kits for safety assessment of nanomaterials optimized according to the “Corona Patent”. We also assist nanomaterials manufacturing companies to scale-up their production capacities through Nano-PM, Inc. In addition to these, we have a few other business units in development which we hope to announce publicly in the near future. NanoBCA You have been a pioneer in the area of nanotech safety; what inspired you to go into this field? Mr. Bushong Early on as a businessman based in Houston, I was fortunate to have had the opportunity to interact with world-class nanotechnologists at Rice University. These were very exciting and inspirational times led by the preeminent work of Nobel Laureate, Dr. Richard Smalley. From this exposure we quickly realized that it was inevitable that nanosafety would become a cornerstone of the successful development of commercialization of nanotechnologies. So, we rolled up our sleeves and started to put together a team, and a group of companies, that could provide valuable counsel in this burgeoning sector. NanoBCA You have built one the most impressive boards that I have seen in our nanotech community. How did you attract such an esteemed group? Mr. Bushong Thank you for saying that, and I agree. We have been blessed to have some of the forefathers of nanotechnology, and other very prominent and capable businessmen, statesman and leaders join us. For instance: Dr. Malcolm Gillis (President Emeritus of Rice University) who funded Dr. Smalley’s Noble Prize lab, the Texas UK Collaborative with Lord Sainsbury, and helped form the Nano Health Alliance; former Governor of Virginia George Allen; and our Chairman, now retired Honorary Consul General Jan Dryselius are just a few of the elite caliber of leaders who have helped us develop this business. When he was the U.S. Senator from Virginia, Gov. Allen, as you very well know, was the Lead Co-Sponsor of the 21st Century Nanotechnology Research Development Act, which your organization, the NanoBusiness Commercialization Association, was instrumental in developing widespread support for through your advocacy. I’d also like to mention Allen Gelwick who is one of the thought leaders and visionaries in the insurance industry with regard to the importance of standards for potential insurance risk assessment and underwriting pertaining to nanomaterial use. NanoBCA Thank you Harry. We at the NanoBCA have been in the trenches with you every step along the way. In your opinion, how have things changed regarding perception of safety issues from when you started this journey? Mr. Bushong That’s a great question. Things have changed so much from the early days. Ten years ago, as a society we were still very much in the research and development days of nanotechnology. At that time, safety beyond the lab space was not of major concern to most stakeholders for a variety of reasons. We simply did not have the data or the standardization needed to establish significant regulatory oversight, and frankly the very early days of commercialization were just beginning. This makes me think of our good friend Dr. Mihail Roco, whom I was with just a month or so ago in London where we facilitated his presentation at the Royal Institution of Great Britain. His predictions (and well-known chart) regarding the timeline of nanotechnology development and commercialization, as you also know, highlights this year, 2015, as the year that global market impact of nanotechnologies will reach $1 Trillion. That represents a very slow but steady growth from $200 Million in 2000. So, it took 15 years to grow from $200 Million to $1 Trillion. What is most interesting to me is that Dr. Roco predicts a jump from $1 Trillion to $3 Trillion in just five years time, from 2015 to 2020. That’s an exponential leap. Dr. Roco’s predictions have been exceptionally accurate. So, it’s fair to say that we are now truly in the midst of a rapid growth phase of nanotechnology commercialization. And with that, we see rapidly increasing interest in issues of nanosafety across the lifecycle of nanomaterials from research to development to commercialization and with regard to worker safety on the manufacturing floor to the consumer and right through to the environmental disposal of these materials. NanoBCA You mentioned Dr. Roco’s presentation in London. Can you tell us more about that? Mr. Bushong Last year we started a Leadership Series in London at the Royal Institution of Great Britain where we showcase nanotechnology leaders from across the world. It’s been very successful and continues to grow. We wanted a nanotechnology event that engaged the business community, and especially the insurance industry. Without insurance, there would be no nano-enabled products. We’ve attempted to engage all insurers and reinsurers, helping to educate the insurance and risk management community. This included support for a not-for-profit organization known as the "Nano Insurance Forum" that was well received, but a limited number of markets were willing to support with a preference to each company developing their own approach to address this emerging risk. The number of insurance companies with underwriting questions or hazard classifications relating to engineered nanomaterials produced by insured or are part of the supply chain, but not disclosed remains limited. Our main benefactor for the Leadership Series is Lockton Companies, and we also have a number of nano industry corporate leaders who support the events. Our first event at The Royal Institution of Great Britain included presentations by both Dr. Malcolm Gillis and Royal Commissioner Michael Depledge. Our second event featured Dr. Mihail Roco. We are excited to announce that Dr. Michael A. Meador, Director of the National Nanotechnology Coordination Office, has agreed to be our next presenter in the series, on Tuesday October 20, 2015 in London. The Royal Institution of Great Britain has been a perfect venue for the Leadership Series. As you know, it is also the home of the highly regarded Faraday Museum, which focuses on the history of science. I highly encourage everyone to join us for Dr. Meador’s presentation in October. NanoBCA What are your impressions of the regulatory environment in the U.S. as compared to abroad? Mr. Bushong After a few years, our company was quickly drawn to the European Union because the EU was a few years ahead of the U.S. with regard to formal oversight of nanosafety. We encountered a great amount of interest and demand for our expertise in Europe. And while we were not intentionally looking for business in Europe (we were focused in the U.S. at the time), it really turned out to be a godsend for us because it introduced us to so many important players and truly allowed us to globalize our team and our markets. Now, the U.S. regulatory environment is very rapidly catching up with the EU as you can see in the ramped up activities of the EPA and FDA over the past year or so. NanoBCA How do you see the regulatory environment developing over the coming 5 years? Mr. Bushong Given the truth of Dr. Roco’s predictions which we can all see evolving before our eyes, there is no doubt that the massive increase of nanomaterials in the marketplace will coincide with a similar increase in interest and oversight of their safety, not only by regulators but by other interested parties. The truth of the matter is that all Fortune 500 and FTSE 100 companies that manufacturer anything, are utilizing nanomaterials, either directly or through their supply chain. Increased regulatory oversight is bound to occur. The Japanese and Koreans are implementing rules as well. The bottom line is that industry needs to be responsible and test the safety of their engineered nanoparticles before they scale-up production and expose either their employees, consumers or the environment to unknown risks. Industry leaders that are proactive on Health and Safety will have a competitive advantage in the market place. We are starting to see it now. NanoBCA What other “interested parties” are you referring to? Mr. Bushong Well, there have been some very significant developments in the last year or so outside the realm of just the regulatory agencies. First, the class action litigation against Johnson Johnson subsidiary DePuy Orthopaedics which involved alleged damage done to patients related to a nanocoating on their hip implants has caused a significant increase in interest to better understand safety data of nanomaterials in products. Johnson Johnson’s settlements in that case are at around $3 Billion and still growing. Secondly, Dunkin’ Donuts, as you know, just acquiesced to pressure from an advocacy group to remove titanium dioxide nanoparticles from its powdered donuts. This development just scratches the surface of nanomaterials that are currently in the marketplace in food, food packaging and cosmetics, not to mention many other products. The visibility and broad media coverage of the Dunkin’ Donuts decision has put a spotlight on the issue of nanosafety and has greatly increased interest among a broad spectrum of stakeholders. And finally, in light of these developments, the insurance sector has taken a much more focused approach to issues of nanosafety. And so, there are a lot of forces at work outside of the regulatory agencies that are driving serious interest in the services that we provide at Nano Risk Assessment International, Ltd. and our affiliated companies. NanoBCA Harry, can you provide us with a little more technical detail of why companies should engage with Nano Risk Assessment International, Ltd. Mr. Bushong Great question. Let me start with the basic summary and we can expand from there. As we all know, the physical and chemical properties of nanomaterials are particles known to be significantly unique from materials having larger crystallites but with the same chemical composition. This allows for optimal business applications of these unique nanoparticle properties that companies engineer into their products which function better than the commonly used micro-scaled materials of the 20th Century. Characterization of these nanomaterials is possible, and highly recommended by us, with analytical chemical methods in typical environments, from a life-cycle management perspective, recognizing the cost of ownership perspective from cradle-to-grave. This is very important for responsible advanced material development. By “responsible”, I mean that companies that engage in this effort will greatly reduce the risks that they potentially adverse action by regulatory agency action, consumer legal action, or that they fall short of requirements demanded by sought after investors, or insurers. In the long run, adherence to these emerging national standards for safety, also reduces regulatory burden and oversight, thus creating a total cost of ownership savings not just a business cost. At Nano Risk Assessment International, Ltd., we have the team and knowhow to assist and we are seeing that a growing number of companies are finding value in making strategic and smart decisions regarding their safety program. NanoBCA Thank you for inviting the NanoBCA to serve on the judges’ panel for your NanoArt Contest. It’s a terrific program and an honor for us to be involved. How did the NanoArt Contest get started? Mr. Bushong The contest has exceeded our expectations and continues to engage great young minds across the world. The first year we focused on French PhD students in STEM education fields. In Year 2, we expanded to include students across Europe. This year, we’ve included U.S. PhD students. You can learn more at: ( . I encourage everyone to spread the word. We have great prizes: a monthly $200 winner, and our top 3 annual prizes are $5,000, $3,000 and $2,000. Our contest organizer is the Foundation Nanoscience based in Grenoble, France. NanoBCA Harry, thank you for your time and thoughtful responses. We wish you luck and look forward to seeing you and your team at the 2015 NanoBCA DC Roundtable (, May 19-20th, in Washington, DC.

Three-Dimensional Printing/Additive Manufacturing Incorporating Nanomaterials

April 30, 2015 - 5:39am
Additive manufacturing for the creation of complex three-dimensional (3D) structures has gained significant attention in recent years as a means to manufacture enhanced structural and functional architectures that retain the properties of the materials utilized, for example mechanical strength and thermal properties. 3D printing has emerged as a versatile approach to build such structures from ink formulations incorporating nanomaterials dispersions that have been engineered to provide the necessary properties desired within the physical structure. While 3D printing of a range of nanomaterials has been demonstrated, graphene has recently been explored for the printing of 3D structures of various dimensions having controlled properties. Example applications include printed electronics, biosensors, strain sensors, battery electrodes and separators, or filtration wherein the electrical, physical, chemical, or mechanical properties of the structures are controlled to provide targeted functionality by design. Utilizing processes such as inkjet or nanoimprint lithography, structures have been realized for printed electronics and sensors. More recently, a 3D printing strategy has been demonstrated for the fabrication of 3D graphene aerogels with designed macroscopic architectures, enabling a method to further control the mechanical and surface area properties of complex macroscale structures. This technique reported by Zhu, et. al. employs a three-axis motion stage to assemble 3D structures by robotically extruding a continuous ‘ink’ filament through a micronozzle at room temperature in a layer-by-layer scheme to create 3D periodic graphene aerogel macroarchitectures. This approach, based on the precise deposition of grapheme oxide (GO) ink filaments on a pre-defined tool path to create architected 3D structures, first addresses the challenge of tailoring the composition and rheology of the inks in order to readily flow through the nozzle while maintaining sufficient viscosity to support the shape after deposition. The authors added a fused silica powder to the ink suspension as a means to increase its’ viscosity and enhance the printability of the GO ink. The use of the silica filler in the ink provided several benefits including longer pot life, better control over viscosity, and GO density in the resulting aerogel matrix which tend to have high porosity and therefore low density of GO nanostructures within the porous structure. The authors demonstrated 3D printed aerogel microlattices printed having properties that met or exceeded those of bulk aerogel materials. These graphene microlattices, constructed in a log-pile configuration, possess large surface areas, good electrical conductivity, low relative densities and supercompressibility, and are much stiffer than bulk graphene of comparable geometric density. The authors demonstrated that the microstructure and density of the graphene aerogel can be modified by changing the ink formulation, while the mechanical properties of the microlattices can be tuned. Thus work demonstrates a manufacturing method for creating periodic or engineered structures using this novel material which will further expand the range of applications where graphene can be utilized, opening up the possibility to explore the properties and applications of graphene in a self-supporting, structurally tunable and 3D macroscopic form, and could further lead to new types of graphene-based electronics. Reference: Zhu C, Han YJT, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA. Highly Compressible 3D Periodic Graphese Aerogel Microlattices. Nature Communications. 2015; 6: 6962 doi: 10.1038/ncomms7962 (

3D-printed graphene for electronic and biomedical applications

April 30, 2015 - 3:56am
Exploiting graphene's exceptional electronic, mechanical, and thermal properties for practical devices requires fabrication techniques that allow the direct manipulation of graphene on micro- and macroscopic scales. Finding the ideal technique to achieve the desired graphene patterning remains a major challenge. One manufacturing route that researchers have been exploring with increased intensity is inkjet printing where liquid-phase graphene dispersions are used to print conductive thin films. Inkjet printing, however, doesn't help much when trying to build three-dimensional (3D) graphene structures. This is where 3D-printing comes in. Applying 3D printing concepts to nanotechnology could bring similar advantages to nanofabrication – speed, less waste, economic viability – than it is expected to bring to manufacturing technologies. These 3D printing techniques are reaching a stage where desired products and structures can be made independent of the complexity of their shapes – even bioprinting tissue and entire organs is now in the realm of the possible. "From a 3D printing perspective, graphene has been previously incorporated into 3D printed materials, but most of these constructs comprise no greater than about 20 volume % of the total solid of the composite, resulting in electrical properties that are significantly less than what we describe in our recent work," says Ramille N. Shah (, Assistant Professor, Materials Science and Engineering and Assistant Professor, Surgery (Transplant Division), Simpson Querrey Institute for BioNanotechnology at Northwestern University. In new work, Shah and her team, who worked with Mark Hersam's group ( at Northwestern, show that high volume fraction graphene composite constructs can be formed from an easily extrudable liquid ink into multi-centimeter scaled objects. The results have been published in a paper in the April 10, 2015 online edition of ACS Nano ("Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications" ( The researchers developed a solution-based, scalable graphene ink (3DG) that can be 3D-printed under ambient conditions via simple extrusion into arbitrarily shaped, electrically conductive, mechanically resilient, and biocompatible scaffolds with filaments ranging in diameter from 100 to 1000 µm. Despite being comprised primarily of graphene (60 vol % of solid), which is stiff and brittle, the resulting material is very flexible and can be easily printed into small or large scale (multiple centimeters) objects. "Our resulting 3D printed constructs contains majority graphene while maintaining structural integrity and handability, which is enabled by the particular biocompatible elastomer binder – PLG – that we chose in combination with the solvent system," explains Shah. She notes that a significant motivating factor behind this work was the need for more innovative biomaterials for nervous tissue regeneration, and also biomaterials that are translatable – i.e. scalable and not so expensive to produce. Theses novel 3D printable graphene inks are relatively easy to produce in a scalable fashion, can be rapidly fabricated into an infinite variety of forms (including patient specific implants), and are also surgically friendly (can be trimmed to size and sutured to surrounding tissue). It was known previously that graphene and conductive materials could influence cell behavior, particularly those related to neurogenic stem cell lines. Many previous studies, however, used neural stem cells, which are already predisposed to become neuron-like cells but are difficult to translate clinically. A highly interesting result for stem cell researchers is the demonstration of neurogenic differentiation of adult mesenchymal stem cells without added biological factors – such as nerve growth factor – or electrical stimulation (unlike neural stem cells, adult mesenchymal stem cells are a more translatable cell source since they can be easily obtained from patients). "In our experiments, we have shown the ability of 3DG scaffolds to induce neurogenic differentiation of adult mesenchymal stem cells without the need for any other neurogenic growth factors or external stimuli," Shah points out. "This is a major finding that supports the use of materials themselves for inducing specific cellular responses that can be leveraged for tissue engineering and regenerative medicine applications." The researchers' results suggest that the unique physical, electrical, and biological properties of 3DG could open the door to addressing a variety of medical problems requiring the regeneration of damaged, degenerated, or otherwise non-functional electrogenic tissues such as nerves, bone, or skeletal and cardiac muscle. Beyond regenerative medicine applications, there are a number of other potential medical applications including using 3DG in implantable biosensors and/or electrical devices. Outside of medicine, there is potential for 3DG to be used for biodegradable electronics or sensors in consumer products. This work is an excellent example of how 3D printing can aid in developing entirely new kinds of functional material systems, with unique, and highly advantageous properties, such as those exhibited by 3DG. Particular challenges to realize this include the creation of 3D printable functional material inks that are also scalable and translatable. Another challenge is the ability to 3D print multiple types of materials to create functioning devices. Last but not least, innovations in 3D printers themselves are still needed to be able to easily scale and multi-material print at a commercial manufacturing level. Source: Nanowerk (

NIST and NSF Partner to Launch Industry-University Consortium to Provide Input on National ...

April 30, 2015 - 3:44am
The U.S. Commerce Department's National Institute of Standards and Technology (NIST) and the National Science Foundation (NSF) announced today that they will establish a consortium to provide private‐sector input on national advanced manufacturing research and development priorities. NSF has released a solicitation (, calling for applications from organizations to administer the consortium through a cooperative agreement. The consortium is being established in response to one of the primary recommendations published in Advanced Manufacturing National Program Office ( and the Advanced Manufacturing Subcommittee of the President's National Science and Technology Council. The solicitation ( issued today by NSF explains that the agencies will provide funding of up to $6 million total (up to $2 million per year for up to three years), with no cost share required. Applications are due July 20, 2015. NSF will have primary administrative responsibility for the consortium. NIST will have responsibility for consortium-organized conferences and outreach activities. NSF and NIST also are collaborating with NASA and the departments of Defense, Education and Energy to build the National Network for Manufacturing Innovation (, a network of research and development centers aimed at scaling up cutting-edge manufacturing technologies to enable the rapid commercialization of made-in-America products. The Obama Administration has made investing in cutting-edge manufacturing technologies a priority, increasing federal manufacturing research and development investment by a third to nearly $2 billion annually. U.S. leadership in transformative emerging manufacturing technologies anchors U.S. competitiveness for advanced manufacturing jobs and investment. The new consortium will play an important role in informing these critical investments in the future of U.S. advanced manufacturing. As a non-regulatory agency of the Commerce Department, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life. To learn more about NIST, visit ( Source: NIST (

MIT sensor detects spoiled meat

April 30, 2015 - 3:39am
Tiny device could be incorporated into “smart packaging” to improve food safety. MIT chemists have devised an inexpensive, portable sensor that can detect gases emitted by rotting meat, allowing consumers to determine whether the meat in their grocery store or refrigerator is safe to eat. The sensor, which consists of chemically modified carbon nanotubes, could be deployed in “smart packaging” that would offer much more accurate safety information than the expiration date on the package, says Timothy Swager, the John D. MacArthur Professor of Chemistry at MIT. It could also cut down on food waste, he adds. “People are constantly throwing things out that probably aren’t bad,” says Swager, who is the senior author of a paper describing the new sensor this week in the journal Angewandte Chemie. The paper’s lead author is graduate student Sophie Liu. Other authors are former lab technician Alexander Petty and postdoc Graham Sazama. The sensor is similar to other carbon nanotube devices that Swager’s lab has developed in recent years, including one that detects the ripeness of fruit ( All of these devices work on the same principle: Carbon nanotubes can be chemically modified so that their ability to carry an electric current changes in the presence of a particular gas. In this case, the researchers modified the carbon nanotubes with metal-containing compounds called metalloporphyrins, which contain a central metal atom bound to several nitrogen-containing rings. Hemoglobin, which carries oxygen in the blood, is a metalloporphyrin with iron as the central atom. For this sensor, the researchers used a metalloporphyrin with cobalt at its center. Metalloporphyrins are very good at binding to nitrogen-containing compounds called amines. Of particular interest to the researchers were the so-called biogenic amines, such as putrescine and cadaverine, which are produced by decaying meat. When the cobalt-containing porphyrin binds to any of these amines, it increases the electrical resistance of the carbon nanotube, which can be easily measured. “We use these porphyrins to fabricate a very simple device where we apply a potential across the device and then monitor the current. When the device encounters amines, which are markers of decaying meat, the current of the device will become lower,” Liu says. In this study, the researchers tested the sensor on four types of meat: pork, chicken, cod, and salmon. They found that when refrigerated, all four types stayed fresh over four days. Left unrefrigerated, the samples all decayed, but at varying rates. There are other sensors that can detect the signs of decaying meat, but they are usually large and expensive instruments that require expertise to operate. “The advantage we have is these are the cheapest, smallest, easiest-to-manufacture sensors,” Swager says. “There are several potential advantages in having an inexpensive sensor for measuring, in real time, the freshness of meat and fish products, including preventing foodborne illness, increasing overall customer satisfaction, and reducing food waste at grocery stores and in consumers’ homes,” says Roberto Forloni, a senior science fellow at Sealed Air, a major supplier of food packaging, who was not part of the research team. The new device also requires very little power and could be incorporated into a wireless platform Swager’s lab recently developed ( that allows a regular smartphone to read output from carbon nanotube sensors such as this one. The researchers have filed for a patent on the technology and hope to license it for commercial development. The research was funded by the National Science Foundation and the Army Research Office through MIT’s Institute for Soldier Nanotechnologies. Source: MIT News (

Nanotechnology Enabling the Possibility of Alternative Fuels: Electrolytic Water Splitting ...

April 23, 2015 - 6:51am
In an effort to transition from petroleum-based fuels, vehicles such as the Hyundai Tucson Fuel Cell are becoming more widespread. However, the inherent safety and cost of compressed hydrogen tanks are still in question. Electrolytic water splitting represents the most environmentally friendly alternative to generate hydrogen gas; however, the kinetics of the oxygen evolution reaction (OER) are slow and require a catalyst. Most catalysts to date have been limited to transition metal oxides or noble metals – both of which are expensive and unsustainable. The report by Lu et al. reports that unexpectedly high OER catalytic activity was achieved by oxidized multi-walled carbon nanotubes (MWCNTs). A variety of precursors may be used to synthesize MWCNTs, which has resulted in lower costs and ready availability of these nanostructures. In this work detailing the development of metal free electrocatalysts, it was discovered that surface-oxidized MWCNTs, post-treated by hydrothermal and electrochemical activation treatments, showed unprecedented OER activity even in the absence of surface metal oxide catalysts. This OER activity was rationalized by the oxygen containing functional groups such as ketonic C-O, which altered the electronic distribution of the surrounding carbon atoms at the MWCNT surfaces, thereby facilitating the adsorption of water oxidation intermediates. These findings open the door to new applications of surface-oxidized MWCNTs for catalyzing a class of important anodic reactions in water splitting and fuel cells. Further improvements of the activity of the surface-oxidized carbon nanomaterials may enable the fine-tuning of the structure and compositions of hybrid carbon materials for specific applications. These findings provide a prime example of sustainable pathways for nanotechnology to solve critical environmental and societal issues. Reference: Lu X, Yim W-L, Suryanto BHR, Zhao C. Electrocatalytic Oxygen Evolution at Surface-Oxidized Multiwall Carbon Nanotubes. J. Am. Chem. Soc. 2015; 137 (8): 2901-2907 doi: 10.1021/ja509879r ( Image reprinted with permission from American Chemical Society

The world's first drug test printed on paper

April 15, 2015 - 10:15am
VTT is the first in the world to have developed a drug test printed on paper. VTT used antibodies – produced by methods of molecular biology – as morphine sensing molecules when creating this printing technology-based morphine test. Using printing technology to manufacture rapid tests enables high production volumes and low production costs. A paper-based test enables a rapid analysis of whether a compound – in this case, morphine – is present in a given sample. Possible future applications of the developed test include drug testing at workplaces and in connection with traffic control. This method, developed by VTT Technical Research Centre of Finland Ltd, provides several advantages, such as high production volumes, low material costs and disposability as well as design freedom based on bendability and foldability of paper. "In 2010, we proved that the VTT method works in a hemoglobin assay. Through our continued development efforts, we wanted to confirm that the method also works in mass-production of more demanding tests. Morphine as a small-sized molecule places major requirements on the analytical performance of the test. In the future, the new method will also present an opportunity to simultaneously analyse other drugs of abuse and residues of pharmaceuticals and their metabolites from one and the same sample", says Tomi Erho, Principal Scientist at VTT. Morphine and hemoglobin tests have shown that paper is an excellent platform for various antibody-based tests. In rapid testing, paper can replace nitrocellulose, which is typically used as a reaction and flow substrate, to provide a very low-cost, lightweight and biodegradable material alternative. In the future, paper could also become a competitive alternative for commonly used plastic-based assay platforms. Printing technology will be a low-cost method for the manufacture of rapid tests designed for the use of consumers, businesses and authorities for instance in the areas of health, welfare and the environment. Rapid diagnostics and the expansion of testing outside clinical and analytical laboratories to patients and other end-users is a rising trend. Printing of tests on paper will provide entirely new opportunities for innovations based on the mass production of home test kits. The research was performed at VTT as part of research projects mainly funded by Tekes – the Finnish Funding Agency for Innovation. The VTT study "A paper-based lateral flow assay for morphine ( " was published in the Analytical Bioanalytical Chemistry journal: ( Source: VTT (