Feed aggregator

3D imaging helps improve block copolymer templates

Nanotechweb - January 19, 2017 - 5:28am
Designing and fabricating improved templates for patterning electronics components with feature sizes of less than 5 nm.

Scaffoldless tissue engineering benefits from combined approach

Nanotechweb - January 18, 2017 - 5:48am
Combining techniques for cuing growth morphology with magnetic nanoparticles for levitation and manipulation proves a powerful and versatile tool for tissue engineering

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires

Nanotech-Now - January 17, 2017 - 7:45am
The energy density contained in the center of a star is higher than we can imagine - many billions of atmospheres, compared with the 1 atmosphere of pressure we live with here on Earth's surface.

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials

Nanotech-Now - January 17, 2017 - 7:45am
What can a beetle tell us about good design principles? Quite a lot, actually. Many insects and crustaceans possess hard, armor-like exoskeletons that, in theory, should weigh the creatures down. B...

New laser based on unusual physics phenomenon could improve telecommunications, computing

Nanotech-Now - January 17, 2017 - 7:45am
Researchers at the University of California San Diego have demonstrated the world's first laser based on an unconventional wave physics phenomenon called bound states in the continuum. The technology...

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit

Nanotech-Now - January 17, 2017 - 7:45am
Physicists at the National Institute of Standards and Technology (NIST) have cooled a mechanical object to a temperature lower than previously thought possible, below the so-called "quantum limit."

Plasmonic circuits brighten up

Nanotechweb - January 16, 2017 - 5:28am
New ultra-compact laser made from semiconductor nanowires and wafer-scale plasmonic waveguides could be used in next-generation optoelectronics devices and photonics circuits as well as in future data-communication technologies.

New super-resolution microscope combines Nobel-winning technologies

Nanotechweb - January 16, 2017 - 5:27am
New technique achieves nanometre-scale resolution quickly.

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained i

Nanotech-Now - January 15, 2017 - 7:45am
Shrinking the investigation of objects down to the nanometer scale often reveals new properties of matter that have no equivalent for their bulk analysis. This phenomenon is motivating many current st...

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments

Nanotech-Now - January 15, 2017 - 7:45am
Inspired by micro-scale motions of nature, a group of researchers at the Indian Institute of Technology Madras and the Institute of Mathematical Sciences, in Chennai, India, has developed a new design...

Ultra-fast, ultra-sensitive platinum selenide gas sensors

InterNano Industry News - January 15, 2017 - 4:45am
Researchers have demonstrated ultrafast and highly sensitive gas sensors using platinum selenide. This material - a transition metal dichalcogenide (TMD) - has promising potential in different areas of nanoelectronics, including optoelectonics as well as sensing.
Categories: Nanotechnology News

U.S. EPA finalizes reporting and record keeping requirements on nanoscale materials

InterNano Industry News - January 15, 2017 - 4:45am
For the first time, EPA is using TSCA to collect existing exposure and health and safety information on chemicals currently in the marketplace when manufactured or processed as nanoscale materials.
Categories: Nanotechnology News

Disposable biosensors made from newspaper

InterNano Industry News - January 15, 2017 - 4:45am
Paper, probably the cheapest and most widely used flexible and eco-friendly material in daily life, is a promising substrate for making flexible devices ranging from electronics to microfluidics, energy storage and sensors. In new work, researchers have developed a new and reliable method to achieve conformal coating of individual cellulose fibers in the paper and the fabrication of a metal electrode via patterning of gold and silver layers on the coated paper.
Categories: Nanotechnology News

Molybdenum-Disulfide 2D Transistors Go Ballistic

InterNano Industry News - January 15, 2017 - 4:45am
<?xml version="1.0" encoding="UTF-8"?> 2D nanomaterial pulls ahead with working registers and latch circuits and devices that let electrons zip through unimpeded Image: Stanford University Molybdenum disulfide, a two dimensional semiconductor that’s just 3 atoms thick, has had a big year. In October, a group of researchers made a 1-nanometer transistor from the material, showing that even if silicon transistors stop shrinking, the new material might provide a path forward. In December, at the IEEE International Electron Devices Meeting in San Francisco, researchers presented work they say shows that molybdenum disulfide not only makes for superlative single transistors, but can be made into complex circuits using realistic manufacturing methods. At the meeting, a group from Stanford showed that molybdenum disulfide transistors made from large sheets of MoS2 can be used to make transistors with 10-nanometer-long, gate shaving electronic properties that approach the material’s theoretical limits. The devices displayed traits close to ballistic conduction, a state of very low electrical resistance that allows the unimpeded flow of charge over relatively long distances—a phenomenon that should lead to speedy circuits. Separately, a team from MIT demonstrated complex circuit elements made from MoS2 transistors. Most of the work on molybdenum disulfide so far has been what Stanford electrical engineer Eric Pop calls “Powerpoint devices.” These one-off devices, made by hand in the lab, have terrific performance that looks great in a slide. This step is an important one, says Pop, but the 2D material is now maturing. Image: Stanford University The Stanford lab’s transistors are not as small as the record-breaking ones demonstrated in October. What’s significant, says group leader Pop, is that these latest transistors maintained similar performance even though they were made using more industrial-type techniques. Instead of using Scotch tape to peel off a layer of molybdenum disulfide from a rock of the material, then carefully placing it down and crafting one transistor at a time, Pop’s grad student started by growing a large sheet of the material on a wafer of silicon. In a transistor, a gate electrode switches the semiconductor channel between conducting and insulating states. In the Stanford device, the tricky part was coming up with an easy way to make a small gate atop the molybdenum disulfide without harming it, says Pop. That is, until his student, Christopher English, realized they could harness the power of rust. English chose a somewhat unusual material, aluminum, to serve as the gate electrode. He deposited a 20-nanometer finger of aluminum on the molybdenum, then allowed it to oxidize and shrink down to a smaller size. The gate ends up being about 10 nanometers. At these relatively small dimensions, the molybdenum disulfide transistors approach their ultimate electrical limit, a state called ballistic conduction. When a device is small enough (or at low enough temperature), electrons will travel through the conducting medium without scattering because of collisions with the atoms that make up the material. Transistors operating ballistically should switch very fast and enable high-performance processors. Pop estimates that about 1 in 5 electrons moves though the rusty transistors ballistically. By further improving the quality of the material (or making the transistors smaller), he expects that ratio to improve. The important thing, he says, is the way they achieved this: using methods that could translate to larger scales. “We have all the ingredients we need to scale this up,” says Pop. Zippy nanoscale transistors are great on their own, but they’re useful only if you can build them into circuits.  Researchers from MIT demonstrated just that by constructing working registers and latches. They managed the feat, says electrical engineer Dina El-Damak, by creating computer-aided design software tailored to MoS2. This sort of software is common in the silicon world and enables designers to come up with new circuits relatively easily. (El-Damak worked on the molybdenum disulfide project at MIT and is now a professor at the University of Southern California in Los Angeles.) Since molybdenum disulfide is so new, not many circuit designers have worked with the material. So far, most work has been done by trial and error, one device at a time. The MIT group can create an informed circuit design, using their computer models to simulate the best and worst cases, based on the material’s known properties and the performance of previous devices, says El-Damak. Then the group fabricates the design that seems most likely to work, tests its performance, and feeds the results back into the program. “By doing this, we have more confidence in scaling up this technology,” she says. Both Pop and El-Damak say molybdenum disulfide is unlikely to be a direct replacement for silicon. The material will either be used to build complementary systems on top of silicon chips, or it will be used on its own in flexible, transparent electronics. It’s also possible that some other 2D semiconductor will end up being a better option. Molybdenum disulfide is a few steps ahead because researchers have worked with it more than, say, tungsten selenide, and know how to grow the material over large areas. The Stanford and MIT research demonstrates important progress in this field, says Deji Akinwande, an electrical engineer at the University of Texas at Austin who co-chaired the IEDM session on 1D and 2D devices. People who work in industry are always asking when these materials will be made into useful circuits, and now it’s happening, he says. “Industry is starting to take this more seriously, now that it’s no longer just the grad student in the basement working on it,” he says.
Categories: Nanotechnology News

Efficient nanowire solution for a big-name pollutant

InterNano Industry News - January 15, 2017 - 4:45am
Researchers designed an extremely efficient catalytic system to remove carbon monoxide.
Categories: Nanotechnology News

Imec and Besi Demonstrate Long-Term Reliability of Ni-Cu-Ag Plated Solar Modules

InterNano Industry News - January 15, 2017 - 4:45am
Drunen (The Netherlands) and Leuven (Belgium)—January 3, 2017—Today, the world-leading research and innovation hub in nano-electronics, energy and digital technology imec (partner in...
Categories: Nanotechnology News

Responsive filtration membranes by polymer self-assembly

InterNano Industry News - January 15, 2017 - 4:45am
A new review article discusses recent developments in stimuli-responsive membranes with an emphasis on membranes manufactured by polymer self-assembly.
Categories: Nanotechnology News

Controlling the organizational behavior of nanoparticles with polymers

InterNano Industry News - January 15, 2017 - 4:45am
By harnessing the intrinsic organizational properties of polymeric tethers, nanoparticles can be programmed to self-assemble into a variety of micron-sized domain structures in a reversible way.
Categories: Nanotechnology News

Three-layer nanoparticle catalysts improve zinc-air batteries

InterNano Industry News - January 15, 2017 - 4:45am
Nanoparticles containing three different layers of material can help to boost the performance of a zinc-air battery, researchers have found.
Categories: Nanotechnology News

Silver nanowire inks enable paper-based printable electronics

InterNano Industry News - January 15, 2017 - 4:45am
By suspending tiny metal nanoparticles in liquids, scientists are brewing up conductive ink-jet printer 'inks' to print inexpensive, customizable circuit patterns on just about any surface.
Categories: Nanotechnology News