Feed aggregator

Pre-GFP Silicon Photonics Workshop, industry forum part of 12th annual conference: IEEE Photonics Society’s Group IV Photonics Conference Highlights Silicon Photonics, Nanophotonics Research

Nanotech-Now - July 28, 2015 - 7:45am
The 12th International Group IV Photonics Conference, sponsored by the IEEE Photonics Society, will be held 26 - 28 August 2015, at the Pinnacle Vancouver Harbourfront Hotel in Vancouver, British Colu...

QuantumSphere Completes State-of-the-Art Nanocatalyst Production Facility: Now Positioned to Capitalize on Commercial Validation and JDA with Casale, SA

Nanotech-Now - July 28, 2015 - 7:45am
– QuantumSphere, Inc. (QSI) (OTCQB: QSIM), a leading supplier of nanocatalyst technologies for industrial chemical processes, today announced the completion of its state-of-the-art manufacturing facil...

American Chemical Society expands reach to include rapidly emerging area of sensor science

Nanotech-Now - July 28, 2015 - 7:45am
The Publications Division of the American Chemical Society (ACS) today announced the forthcoming 2016 publication of ACS Sensors, a peer-reviewed, interdisciplinary research journal to be devoted to t...

Suspending 2D crystals the easy way

Nanotechweb - July 27, 2015 - 2:34am
New technique may even be applied to other nanomaterials such as nanotubes and nanowires, and could help make better optoelectronic and nanoelectromechanical devices in the future.

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports

Nanotech-Now - July 26, 2015 - 7:45am
AcuteMarketReports.com has announced the addition of "Global Zinc oxide nanopowders Industry 2015: Acute Market Reports" Market Research Report to their Database.

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials

Nanotech-Now - July 26, 2015 - 7:45am
Organic molecules allow producing printable electronics and solar cells with extraordinary properties. In spintronics, too, molecules open up the unexpected possibility of controlling the magnetism of...

Penn researchers discover new chiral property of silicon, with photonic applications

Nanotech-Now - July 26, 2015 - 7:45am
By encoding information in photons via their spin, "photonic" computers could be orders of magnitude faster and efficient than their current-day counterparts. Likewise, encoding information in the spi...

Stretching the limits on conducting wires

Nanotech-Now - July 26, 2015 - 7:45am
In the race to produce highly stretchable conductors, researchers have developed a new technique that aligns sheets of layered carbon nanotubes along stretched rubber cores, creating an extremely flex...

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes

Nanotech-Now - July 26, 2015 - 7:45am
A new fabrication technique that produces platinum hollow nanocages with ultra-thin walls could dramatically reduce the amount of the costly metal needed to provide catalytic activity in such applicat...

UT Dallas nanotechnology research leads to super-elastic conducting fibers

Nanotech-Now - July 26, 2015 - 7:45am
An international research team based at The University of Texas at Dallas has made electrically conducting fibers that can be reversibly stretched to over 14 times their initial length and whose elect...

Global Nano Barium Sulfate Industry 2015 Market Research Report

Nanotech-Now - July 26, 2015 - 7:45am
2015 Global Nano Barium Sulfate Industry Report is a professional and in-depth research report on the world’s major regional market conditions of the Nano Barium Sulfate industry, focusing on the main...

CHN’s Work Cited in Electronic Products Magazine

InterNano Industry News - July 25, 2015 - 3:45am
Electronic Products magazine has cited the Center for High-rate Nanomanufacturing in its July 2015 cover story on printed and flexible electronics. Northeastern’s Center for High-rate Nanomanufacturing (CHN) has developed a simple and highly sensitive multi-biosensor containing semiconductor single-walled carbon nanotubes (SWCNTs) that are enzyme-immobilized for detecting D-glucose, L-lactate, and urea in sweat (fig. 1). CHN’s director, Prof. Ahmed Busnaina, notes that, “The utilization of semiconducting carbon nanotubes for electric detection results in high repeatability and sensitivity. By leveraging the advantage of the carbon nanotubes’ electrical response and enzyme reaction, fast, specific, and continuous detection is achieved. Printing of nanomaterials to create the sensor results in low manufacturing cost”. Download the article from the CHN website: P/F Sensors: Their Future and Challenges (PDF)
Categories: Nanotechnology News

A cool way to form 2-D conducting polymers using ice

InterNano Industry News - July 25, 2015 - 3:45am
Scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way.
Categories: Nanotechnology News

Crowd-Sourced Computing Reveals How to Make Better Water Filters with Nanotubes

InterNano Industry News - July 25, 2015 - 3:45am
Crowd-sourced computing has helped an international research team – including researchers from the University of Sydney - discover a new method of improving water filtration systems and water...
Categories: Nanotechnology News

Nanotechnology transforms cotton fibers into modern marvel

InterNano Industry News - July 25, 2015 - 3:45am
In a nanoscale world researchers can control cellulose-based materials one atom at a time.
Categories: Nanotechnology News

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technolog

InterNano Industry News - July 25, 2015 - 3:45am
The postage stamp-sized square of fused silica Kjeld Janssen is holding may not look like a whole lot to the untrained eye, but inside the clear chip lies the potential to improve how medicine and med...
Categories: Nanotechnology News

Could black phosphorus be the next silicon?

InterNano Industry News - July 25, 2015 - 3:45am
New material could make it possible to pack more transistors on a chip, research suggests.
Categories: Nanotechnology News

Tiny wires could provide a big energy boost

InterNano Industry News - July 25, 2015 - 3:45am
Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough power to transmit data. Now, researchers at MIT and in Canada have found a promising new approach to delivering the short but intense bursts of power needed by such small devices. The key is a new approach to making supercapacitors — devices that can store and release electrical power in such bursts, which are needed for brief transmissions of data from wearable devices such as heart-rate monitors, computers, or smartphones, the researchers say. They may also be useful for other applications where high power is needed in small volumes, such as autonomous microrobots. The new approach uses yarns, made from nanowires of the element niobium, as the electrodes in tiny supercapacitors (which are essentially pairs of electrically conducting fibers with an insulator between). The concept is described in a paper in the journal ACS Applied Materials and Interfaces by MIT professor of mechanical engineering Ian W. Hunter, doctoral student Seyed M. Mirvakili, and three others at the University of British Columbia. Nanotechnology researchers have been working to increase the performance of supercapacitors for the past decade. Among nanomaterials, carbon-based nanoparticles — such as carbon nanotubes and graphene — have shown promising results, but they suffer from relatively low electrical conductivity, Mirvakili says. In this new work, he and his colleagues have shown that desirable characteristics for such devices, such as high power density, are not unique to carbon-based nanoparticles, and that niobium nanowire yarn is a promising an alternative. “Imagine you’ve got some kind of wearable health-monitoring system,” Hunter says, “and it needs to broadcast data, for example using Wi-Fi, over a long distance.” At the moment, the coin-sized batteries used in many small electronic devices have very limited ability to deliver a lot of power at once, which is what such data transmissions need. “Long-distance Wi-Fi requires a fair amount of power,” says Hunter, the George N. Hatsopoulos Professor in Thermodynamics in MIT’s Department of Mechanical Engineering, “but it may not be needed for very long.” Small batteries are generally poorly suited for such power needs, he adds. “We know it’s a problem experienced by a number of companies in the health-monitoring or exercise-monitoring space. So an alternative is to go to a combination of a battery and a capacitor,” Hunter says: the battery for long-term, low-power functions, and the capacitor for short bursts of high power. Such a combination should be able to either increase the range of the device, or — perhaps more important in the marketplace — to significantly reduce size requirements. The new nanowire-based supercapacitor exceeds the performance of existing batteries, while occupying a very small volume. “If you’ve got an Apple Watch and I shave 30 percent off the mass, you may not even notice,” Hunter says. “But if you reduce the volume by 30 percent, that would be a big deal,” he says: Consumers are very sensitive to the size of wearable devices. The innovation is especially significant for small devices, Hunter says, because other energy-storage technologies — such as fuel cells, batteries, and flywheels — tend to be less efficient, or simply too complex to be practical when reduced to very small sizes. “We are in a sweet spot,” he says, with a technology that can deliver big bursts of power from a very small device. Ideally, Hunter says, it would be desirable to have a high volumetric power density (the amount of power stored in a given volume) and high volumetric energy density (the amount of energy in a given volume). “Nobody’s figured out how to do that,” he says. However, with the new device, “We have fairly high volumetric power density, medium energy density, and a low cost,” a combination that could be well suited for many applications. Niobium is a fairly abundant and widely used material, Mirvakili says, so the whole system should be inexpensive and easy to produce. “The fabrication cost is cheap,” he says. Other groups have made similar supercapacitors using carbon nanotubes or other materials, but the niobium yarns are stronger and 100 times more conductive. Overall, niobium-based supercapacitors can store up to five times as much power in a given volume as carbon nanotube versions. Niobium also has a very high melting point — nearly 2,500 degrees Celsius — so devices made from these nanowires could potentially be suitable for use in high-temperature applications. In addition, the material is highly flexible and could be woven into fabrics, enabling wearable forms; individual niobium nanowires are just 140 nanometers in diameter — 140 billionths of a meter across, or about one-thousandth the width of a human hair. So far, the material has been produced only in lab-scale devices. The next step, already under way, is to figure out how to design a practical, easily manufactured version, the researchers say. “The work is very significant in the development of smart fabrics and future wearable technologies,” says Geoff Spinks, a professor of engineering at the University of Wollongong, in Australia, who was not associated with this research. This paper, he adds, “convincingly demonstrates the impressive performance of niobium-based fiber supercapacitors.” The team also included PhD student Mehr Negar Mirvakili and professors Peter Englezos and John Madden, all from the University of British Columbia.
Categories: Nanotechnology News

Nanotechnology center gets $9.8M Air Force grant to develop bioprogrammable nanomaterials

InterNano Industry News - July 25, 2015 - 3:45am
The goal is to develop solutions to challenging problems in the areas of energy, the environment, security and defense, as well as for developing ways to monitor and mitigate human stress.
Categories: Nanotechnology News