Feed aggregator

Duane Boning named LeBel Professor

InterNano Industry News - January 15, 2017 - 4:45am
Duane Boning has been named the Clarence J. LeBel Professor of Electrical Engineering. The chair is named for Clarence Joseph LeBel '26, SM '27, who co-founded Audio Devices in 1937, and was a pioneer in recording discs, magnetic media for tapes, and in hearing aids and stethoscopes. “Boning’s teaching is recognized as outstanding at both the undergraduate and graduate levels, and he is a leader in the field of manufacturing and design,” said Anantha Chandrakasan, the Vannevar Bush Professor of Electrical Engineering and head of the Department of Electrical Engineering and Computer Science (EECS). “This is fitting recognition of his outstanding contributions to research, teaching, mentoring, and service.” Boning’s research focuses on manufacturing and design, with emphasis on statistical modeling, control, and variation reduction in semiconductor, MEMS, photonic, and nanomanufacturing processes. His early work developed computer integrated manufacturing approaches for flexible design of IC fabrication processes. He also drove the development and adoption of run-by-run, sensor-based, and real-time model-based control methods in the semiconductor industry. He is a leader in the characterization and modeling of spatial variation in IC and nanofabrication processes, including plasma etch and chemical-mechanical polishing (CMP), where test mask design and modeling tools developed in his group have been commercialized and adopted in industry. Boning served as editor in chief for the IEEE Transactions on Semiconductor Manufacturing from 2001 to 2011, and was named a fellow of the IEEE for contributions to modeling and control in semiconductor manufacturing in 2005. In addition to creating the graduate-level course 6.780J/2.830J (Control of Manufacturing Process), he has lectured in several core EECS subjects, including 6.003 (Signals and Systems) and 6.001 (Structure and Interpretation of Computer Programs), and is also an outstanding recitation and laboratory instructor. His teaching has been recognized with the MIT Ruth and Joel Spira Teaching Award. Boning won the Best Advisor Award from the MIT ACM/IEEE student organization in 2012 and the 2016 Capers and Marion McDonald Award for Excellence in Mentoring and Advising in the School of Engineering.   Boning served as associate head from Electrical Engineering in EECS from 2004 to 2011. He has previously and presently serves as associate director in the Microsystems Technology Laboratories, where he oversees the information technology and computer-aided design services organization in the laboratories. He is a long-standing and active participant in the MIT Leaders for Global Operations program. Since 2011, he has served as the director for the MIT/Masdar Institute Cooperative Program, fostering many joint activities between MIT and Masdar Institute. From 2011 through 2013, he served as founding faculty lead in the MIT Skoltech Initiative, working to launch the Skolkovo Institute of Science and Technology (Skoltech). Within MIT, Boning has served on several Institute committees, including as chair of the Committee on Undergraduate Admissions and Financial Aid (CUAFA) in 2007, and he will serve as chair of the Committee on the Undergraduate Program (CUP) in 2016-2017.
Categories: Nanotechnology News

Wireless, wearable toxic-gas detector

InterNano Industry News - January 15, 2017 - 4:45am
MIT researchers have developed low-cost chemical sensors, made from chemically altered carbon nanotubes, that enable smartphones or other wireless devices to detect trace amounts of toxic gases. Using the sensors, the researchers hope to design lightweight, inexpensive radio-frequency identification (RFID) badges to be used for personal safety and security. Such badges could be worn by soldiers on the battlefield to rapidly detect the presence of chemical weapons — such as nerve gas or choking agents — and by people who work around hazardous chemicals prone to leakage.   “Soldiers have all this extra equipment that ends up weighing way too much and they can’t sustain it,” says Timothy Swager, the John D. MacArthur Professor of Chemistry and lead author on a paper describing the sensors that was published in the Journal of the American Chemical Society. “We have something that would weigh less than a credit card. And [soldiers] already have wireless technologies with them, so it’s something that can be readily integrated into a soldier’s uniform that can give them a protective capacity.” The sensor is a circuit loaded with carbon nanotubes, which are normally highly conductive but have been wrapped in an insulating material that keeps them in a highly resistive state. When exposed to certain toxic gases, the insulating material breaks apart, and the nanotubes become significantly more conductive. This sends a signal that’s readable by a smartphone with near-field communication (NFC) technology, which allows devices to transmit data over short distances. The sensors are sensitive enough to detect less than 10 parts per million of target toxic gases in about five seconds. “We are matching what you could do with benchtop laboratory equipment, such as gas chromatographs and spectrometers, that is far more expensive and requires skilled operators to use,” Swager says. Moreover, the sensors each cost about a nickel to make; roughly 4 million can be made from about 1 gram of the carbon nanotube materials. “You really can’t make anything cheaper,” Swager says. “That’s a way of getting distributed sensing into many people’s hands.” The paper’s other co-authors are from Swager’s lab: Shinsuke Ishihara, a postdoc who is also a member of the International Center for Materials Nanoarchitectonics at the National Institute for Materials Science, in Japan; and PhD students Joseph Azzarelli and Markrete Krikorian.  Wrapping nanotubes In recent years, Swager’s lab has developed other inexpensive, wireless sensors, called chemiresistors, that have detected spoiled meat and the ripeness of fruit, among other things. All are designed similarly, with carbon nanotubes that are chemically modified, so their ability to carry an electric current changes when exposed to a target chemical. This time, the researchers designed sensors highly sensitive to “electrophilic,” or electron-loving, chemical substances, which are often toxic and used for chemical weapons. To do so, they created a new type of metallo-supramolecular polymer, a material made of metals binding to polymer chains. The polymer acts as an insulation, wrapping around each of the sensor’s tens of thousands of single-walled carbon nanotubes, separating them and keeping them highly resistant to electricity. But electrophilic substances trigger the polymer to disassemble, allowing the carbon nanotubes to once again come together, which leads to an increase in conductivity. In their study, the researchers drop-cast the nanotube/polymer material onto gold electrodes, and exposed the electrodes to diethyl chlorophosphate, a skin irritant and reactive simulant of nerve gas. Using a device that measures electric current, they observed a 2,000 percent increase in electrical conductivity after five seconds of exposure. Similar conductivity increases were observed for trace amounts of numerous other electrophilic substances, such as thionyl chloride (SOCl2), a reactive simulant in choking agents. Conductivity was significantly lower in response to common volatile organic compounds, and exposure to most nontarget chemicals actually increased resistivity. Creating the polymer was a delicate balancing act but critical to the design, Swager says. As a polymer, the material needs to hold the carbon nanotubes apart. But as it disassembles, its individual monomers need to interact more weakly, letting the nanotubes regroup. “We hit this sweet spot where it only works when it’s all hooked together,” Swager says. Resistance is readable To build their wireless system, the researchers created an NFC tag that turns on when its electrical resistance dips below a certain threshold. Smartphones send out short pulses of electromagnetic fields that resonate with an NFC tag at radio frequency, inducing an electric current, which relays information to the phone. But smartphones can’t resonate with tags that have a resistance higher than 1 ohm. The researchers applied their nanotube/polymer material to the NFC tag’s antenna. When exposed to 10 parts per million of SOCl2 for five seconds, the material’s resistance dropped to the point that the smartphone could ping the tag. Basically, it’s an “on/off indicator” to determine if toxic gas is present, Swager says. According to the researchers, such a wireless system could be used to detect leaks in Li-SOCl2 (lithium thionyl chloride) batteries, which are used in medical instruments, fire alarms, and military systems. Alexander Star, a professor of chemistry and bioengineering and clinical and translational science at the University of Pittsburgh, says the researchers’ design for a wireless sensor (or dosimeter) for electrophilic substances could improve soldier safety. “The authors were able to synthesize a [carbon nanotube] composite sensitive to … a class of chemicals of high interest for sensing,” Star says. “This type of device architecture is important for real-life application, due to the fact that a chemical weapon dosimeter worn by military and security personnel requires rapid reading.” The next step, Swager says, is to test the sensors on live chemical agents, outside of the lab, which are more dispersed and harder to detect, especially at trace levels. In the future, there’s also hope for developing a mobile app that could make more sophisticated measurements of the signal strength of an NFC tag: Differences in the signal will mean higher or lower concentrations of a toxic gas. “But creating new cell phone apps is a little beyond us right now,” Swager says. “We’re chemists.” The work was supported by the National Science Foundation and the Japan Society for the Promotion of Science.
Categories: Nanotechnology News

Lithium-Sulfur Batteries Overcome Another Limitation: High Temperatures

InterNano Industry News - January 15, 2017 - 4:45am
<?xml version="1.0" encoding="UTF-8"?> Could safe, durable and high-temperature Li-S batteries lead to EV applications? Image: iStockphoto Lithium-sulfur (Li-S) batteries have been pursued as an alternative to lithium-ion (Li-ion) batteries for powering electric vehicles due to their ability to hold up to four times as much energy per unit mass as Li-ion. However, Li-S batteries don’t come without some problems. For instance, the sulfur in the electrode can become depleted after just a few charge-discharge cycles, or polysulfides can pass through the cathode and foul the electrolyte. Another issue Li-S batteries face is the difficulty of ensuring that they operate safely at high temperatures due to their low boiling and flash temperatures. Now, researchers at the University of Western Ontario, in collaboration with a team from the Canadian Light Source, have leveraged a relatively new coating technique dubbed molecular layer deposition (MLD) that promises to lead to safe and durable high-temperature Li-S batteries. This MLD technique is essentially an adaptation of the conventional atomic layer deposition (ALD) techniques that have been used to deposit thin inorganic oxide films. Where MLD departs from its predecessor is that it can incorporate organic components into the films, making it possible to create hybrid organic-inorganic thin films. MLD is a technique that has proven itself applicable for use in energy storage systems; it provides a high level of control over film thickness and the chemical composition of the target material at a molecular scale. In research described in the journal Nano Letters , the Canadian researchers were able to fabricate safe, high-temperature Li–S batteries on universal carbon–sulfur electrodes using an MLD alucone coating “We demonstrated that MLD alucone coating offers a safe and versatile approach toward lithium-sulfur batteries at elevated temperature,” said Andy Xueliang Sun, who led the research at the University of Western Ontario, in a press release. In the experiments, the researchers demonstrated that the MLD alucone coated carbon-sulfur electrodes remained stable and even showed improved performance at temperatures as high as 55 degrees Celsius. The researchers expect that these performance figures should significantly prolong battery life for high-temperature Li-S batteries.
Categories: Nanotechnology News

Brazil joins race to commercialise graphene

InterNano Industry News - January 15, 2017 - 4:45am
A new graphene and nanomaterials research centre, known as MackGraphe, has officially opened in São Paulo
Categories: Nanotechnology News

Australia opens £80 million nanoscience hub

InterNano Industry News - January 15, 2017 - 4:45am
University of Sydney has unveiled the country’s first purpose-built nanoscience institute
Categories: Nanotechnology News

Nanoworld Snow Blowers Carve Straight Channels in Semiconductor Surfaces

InterNano Industry News - January 15, 2017 - 4:45am
In the nanoworld, tiny particles of gold can operate like snow blowers, churning through surface layers of an important class of semiconductors to dig unerringly straight paths. The surprising trenching capability, reported by scientists ...
Categories: Nanotechnology News

To Give Cancer a Deadly Fever, NIST Explores Better Nanoparticle Design

InterNano Industry News - January 15, 2017 - 4:45am
Heat may be the key to killing certain types of cancer, and new research from a team including National Institute of Standards and Technology (NIST) scientists has yielded unexpected results that should help optimize the design of ...
Categories: Nanotechnology News

Nanoelectronics Conference Focuses on Future of Semiconductor Manufacturing

InterNano Industry News - January 15, 2017 - 4:45am
The characterization technology needed for nanoelectronic materials and device research, development, and manufacturing was discussed by experts from industry, government, and academia at the 2015 International Conference on Frontiers of ...
Categories: Nanotechnology News

NIST Study Suggests Light May Be Skewing Lab Tests on Nanoparticlesapos Health Effects

InterNano Industry News - January 15, 2017 - 4:45am
Truth shines a light into dark places. But sometimes to find that truth in the first place, its better to stay in the dark. Thats what recent findings* at the National Institute of Standards and Technology (NIST) show about methods for ...
Categories: Nanotechnology News

Novel Sodium-Conducting Material Could Improve Rechargeable Batteries

InterNano Industry News - January 15, 2017 - 4:45am
Rechargeable battery manufacturers may get a jolt from research performed at the National Institute of Standards and Technology (NIST) and several other institutions, where a team of scientists has discovered* a safe, inexpensive, ...
Categories: Nanotechnology News

NIST Offers Electronics Industry Two Ways to Snoop on Self-Organizing Molecules

InterNano Industry News - January 15, 2017 - 4:45am
A few short years ago, the idea of a practical manufacturing process based on getting molecules to organize themselves in useful nanoscale shapes seemed … well, cool, sure, but also a little fantastic. Now the day isnt far off when your ...
Categories: Nanotechnology News

Optical Microscope Technique Confirmed as Valid Nano-Measurement Tool

InterNano Industry News - January 15, 2017 - 4:45am
Recent experiments have confirmed* that a technique developed several years ago at the National Institute of Standards and Technology (NIST) can enable optical microscopes to measure the three-dimensional (3-D) shape of objects at ...
Categories: Nanotechnology News

Nano: a cleaner option?

InterNano Industry News - January 15, 2017 - 4:45am
Could nanotechnology tidy up the planet without leaving a dangerous residue of its own?It's likely that you've recently swirled nanotechnology down your sink. Antimicrobial silver nanoparticles, for example, are added to food containers, socks, and cleaning products such as floor polish. But could nanoparticles – measuring less than 100 nanometres wide – clean more than just your house? Could nanotechnology tidy up the planet without leaving a dangerous residue of its own?The European Environment Agency estimates that "potentially polluting activities" have occurred at nearly three million EU sites. But nanoparticles could remediate water, soil and air polluted by compounds such as heavy metals and aromatic hydrocarbons. With high reactivity and a larger surface area than the same mass of material in a larger form, nanoparticles are prime candidates for capturing and destroying pollutants. Continue reading...
Categories: Nanotechnology News

New Nanoscale Imaging Method Finds Application in Plasmonics

InterNano Industry News - January 15, 2017 - 4:45am
Researchers from the National Institute of Standards and Technology (NIST) and the University of Maryland have shown how to make nanoscale measurements of critical properties of plasmonic nanomaterials—the specially engineered ...
Categories: Nanotechnology News

New Quantum Dot Technique Combines Best of Optical and Electron Microscopy

InterNano Industry News - January 15, 2017 - 4:45am
Itaposs not reruns of 'The Jetsons', but researchers working at the National Institute of Standards and Technology (NIST) have developed a new microscopy technique that uses a process similar to how an old tube television produces a ...
Categories: Nanotechnology News

Black gold maximizes the light absorption of nanomaterials

InterNano Industry News - January 15, 2017 - 4:45am
Maximizing light absorption of nanomaterials has been an emerging research field in the recent years due to its attractiveness in a wide range of applications that involves conversion or utilization of solar energy. However, most of the concepts reported are based on multi-layered architecture inspired by optical impedance matching concepts that requires complicated non-scalable fabrication process such as electron beam lithography. Efforts on maximizing light absorption via nanostructuring remain scarce. Researchers have now reported such a material - a nanolayer of black gold.
Categories: Nanotechnology News

Three UT Austin Professors Named Fellows of the National Academy of Inventors - UT News | The University of Texas at Austin

InterNano Industry News - January 15, 2017 - 4:45am
UT News | The University of Texas at AustinThree UT Austin Professors Named Fellows of the National Academy of InventorsUT News | The University of Texas at AustinSreenivasan has published more than 100 technical articles and holds more than 100 U.S. patents in the area of nanomanufacturing. He has received several awards for his work including the Technology Pioneer Award by the World Economic Forum (2005), ...and more »
Categories: Nanotechnology News

Nano-Nouvelle Trial Delivers Nanotech Breakthrough

InterNano Industry News - January 15, 2017 - 4:45am
A successful production trial by Australian battery technology innovator Nano-Nouvelle has proved its pioneering nanotechnology ­­­supports industrial-scale manufacture, with output rates...
Categories: Nanotechnology News

Large-yield synthesis of 2D antimonene nanocrystals

InterNano Industry News - January 15, 2017 - 4:45am
Following up on previous theoretical predictions, researchers now have demonstrated two high-yield methods for fabricating antimonenes - wide-band-gap semiconductors that under strain become direct band-gap semiconductors. Such dramatic transitions of electronic properties could open a new door for nanoscale transistors with high on/off ratio, blue/UV optoelectronic devices, and nanomechanical sensors based on new ultrathin semiconductors. The new approach is generic for various transparent conducting oxides as well as other oxide nanocrystal inks.
Categories: Nanotechnology News