Feed aggregator

Graphene one-day Symposium

InterNano - Upcoming Events - July 30, 2014 - 11:50am
October 28, 2014 - On the occasion of TNT2014, the 15th edition of the Trends in Nanotechnology International Conference (TNT 2014), a Graphene one-day Symposium will be organized in Barcelona (Spain) at Auditorium - ONCE Catalunya. This one-day event will be organized in collaboration with ICN2 (Spain) and will take place on October 28. The Graphene Day entails a plenary session during the morning and the afternoon session will be divided in track A (Graphene science driven) and track B (Graphene driven applications).

Magnetite self-assembly: competition yields surprises

Nanotechweb - July 30, 2014 - 10:46am
Nanocrystals of magnetite self-assemble in the presence of competing van der Waals and magnetic forces into previously unseen helical structures.
Categories: Nanotechnology News

Lasing plasmon nanocavity detects deadly explosives

Nanotechweb - July 30, 2014 - 8:08am
New device might be used in applications such as security screening at airports and in biosensing.
Categories: Nanotechnology News

JSNN nanomanufacturing group adds members

National Nanomanufacturing Network - July 30, 2014 - 3:41am
An organization established by the Joint School of Nanoscience and Nanoengineering (http://jsnn.ncat.uncg.edu/) and Gateway University Research Park (http://www.gatewayurp.com/) in Greensboro to build partnerships between academic researchers and industry has grown to 25 members in its first year, according to an update from the JSNN. The Nanomanufacturing Innovation Consortium was formed (http://www.bizjournals.com/triad/print-edition/2013/07/26/triad-companies-jsnn-join-forces-with.html?page=2) in July 2013 with an initial group of members that included RF Micro Devices (http://www.rfmd.com/), Syngenta (http://www.syngenta-us.com/home.aspx) and VF Jeanswear among others. Members pay a fee to join the NIC and in return gain access to the JSNN’s cutting-edge equipment as well as access to ideas and expertise from the school’s scientists. Other companies have joined since including (http://www.bizjournals.com/triad/blog/2013/12/itgs-cone-denim-burlington.html) International Textile Group’s (http://www.itg-global.com/) Cone Denim and Burlington divisions, Callaway Carbons, Horiba and AxNano. The 25th member of the group and the most recent to join is Luna Innovations (NASDAQ: LUNA), a Roanoke company that makes fiber optic tools for the telecommunications, aerospace, automotive, energy and defense industries. Cone Denim’s Tom Tantillo (http://www.bizjournals.com/triad/search/results?q=Tom%20Tantillo) said his company is already seeing benefits from its first few months as part of the NIC. “This is proving to be an invaluable resource to our organic growth as well as our market competitiveness,” he said. “Having access to the robust tool set and knowledge base at the JSNN gives us an unprecedented competitive edge in certifying that the technical metrics of a newly engineered product will meet consumer performance expectations.” “The development of strong industry relationships is critical to the success of the Joint School of Nanoscience and Nanoengineering,” said James Ryan (http://www.bizjournals.com/triad/search/results?q=James%20Ryan), founding dean of the school, which is a partnership of N.C. A T State University (http://www.ncat.edu/) and UNC-Greensboro (http://www.uncg.edu/). “JSNN continues to benefit from the leadership and vision of member companies, and we look forward to growing the NIC and continuing collaborations with our partners.”Source: Triad Business Journal

Researchers achieve 'holy grail' of battery design: A stable lithium anode

National Nanomanufacturing Network - July 30, 2014 - 3:31am
The development could lead to smaller, cheaper and more efficient rechargeable batteries. Engineers across the globe have been racing to design smaller, cheaper and more efficient rechargeable batteries to meet the power storage needs of everything from handheld gadgets to electric cars. In a paper (http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.152.html) published today in the journal Nature Nanotechnology, researchers at Stanford University report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades – design a pure lithium anode. All batteries have three basic components: an electrolyte to provide electrons, an anode to discharge those electrons and a cathode to receive them. Today, we say we have lithium batteries, but that is only partly true. What we have are lithium ion batteries. The lithium is in the electrolyte but not in the anode. An anode of pure lithium would be a huge boost to battery efficiency. “Of all the materials that one might use in an anode, lithium has the greatest potential. Some call it the Holy Grail,” said Yi Cui (http://profiles.stanford.edu/yi-cui), a professor of Materials Science and Engineering (http://mse.stanford.edu/) and leader of the research team. “It is very lightweight, and it has the highest energy density. You get more power per volume and weight, leading to lighter, smaller batteries with more power.” But engineers have long tried and failed to reach this Holy Grail. “Lithium has major challenges that have made its use in anodes difficult. Many engineers had given up the search, but we found a way to protect the lithium from the problems that have plagued it for so long,” said Guangyuan Zheng, a doctoral candidate in Cui’s lab and first author of the paper. In addition to Cui and Zheng, the research team includes Steven Chu (http://physics.stanford.edu/people/faculty/steven-chu), the former U.S. Secretary of Energy and Nobel Laureate who recently resumed his professorship at Stanford. “In practical terms, if we can triple the energy density and simultaneously decrease the cost four-fold, that would be very exciting. We would have a cell phone with triple the battery life and an electric vehicle with a 300 mile range that cost $25,000 – and with better performance than an internal combustion engine car getting 40 mpg,” Chu said. The engineering challenge In the paper, the authors explain how they are overcoming the problems posed by lithium. Most lithium ion batteries, like those you might find in your smart phone or hybrid car, work similarly. The key components include an anode, the negative pole from which electrons flow out and into a power-hungry device, and the cathode, where the electrons re-enter the battery once they have traveled through the circuit. Separating them is an electrolyte, a solid or liquid loaded with positively charged lithium ions that travel between the anode and cathode. During charging, the positively charged lithium ions in the electrolyte are attracted to the negatively charged anode, and the lithium accumulates on the anode. Today, the anode in a lithium ion battery is actually made of graphite or silicon.Engineers would like to use lithium for the anode, but so far they have been unable to do so. That’s because the lithium ions expand as they gather on the anode during charging. All anode materials, including graphite and silicon, expand somewhat during charging, but not like lithium. Researchers say that lithium’s expansion during charging is “virtually infinite” relative to the other materials. Its expansion is also uneven, causing pits and cracks to form in the outer surface, like paint on the exterior of a balloon that is being inflated. The resulting fissures on the surface of the anode allow the precious lithium ions to escape, forming hair-like or mossy growths, called dendrites. Dendrites, in turn, short circuit the battery and shorten its life. Preventing this buildup is the first challenge of using lithium for the battery’s anode. The second engineering challenge involves finding a way to deal with the fact that lithium anodes are highly chemically reactive with the electrolyte. It uses up the electrolyte and reduces battery life. An additional problem is that the anode and electrolyte produce heat when they come into contact. Lithium batteries, including those in use today, can overheat to the point of fire, or even explosion. They are, therefore, a serious safety concern. The recent battery fires in Tesla cars and on Boeing’s Dreamliner are prominent examples of the challenges of lithium ion batteries. Building the nanospheres To solve these problems the Stanford researchers built a protective layer of interconnected carbon domes on top of their lithium anode. This layer is what the team has called nanospheres. The Stanford team’s nanosphere layer resembles a honeycomb: it creates a flexible, uniform and non-reactive film that protects the unstable lithium from the drawbacks that have made it such a challenge. The carbon nanosphere wall is just 20 nanometers thick. It would take about 5,000 layers stacked one atop another to equal the width of single human hair. “The ideal protective layer for a lithium metal anode needs to be chemically stable to protect against the chemical reactions with the electrolyte and mechanically strong to withstand the expansion of the lithium during charge,” said Cui, who is a member of the Stanford Institute for Materials and Energy Sciences at SLAC National Accelerator Laboratory. The Stanford nanosphere layer is just that. It is made of amorphous carbon, which is chemically stable, yet strong and flexible so as to move freely up and down with the lithium as it expands and contracts during the battery’s normal charge-discharge cycle. Ideal within reach In technical terms, the nanospheres improve the coulombic efficiency of the battery – a ratio of the amount of lithium that can be extracted from the anode when the battery is in use compared with the amount put in during charging. A single round of this give-and-take process is called a cycle. Generally, to be commercially viable, a battery must have a coulombic efficiency of 99.9 percent or more, ideally over as many cycles as possible. Previous anodes of unprotected lithium metal achieved approximately 96 percent efficiency, which dropped to less than 50 percent in just 100 cycles—not nearly good enough. The Stanford team’s new lithium metal anode achieves 99 percent efficiency even at 150 cycles. “The difference between 99 percent and 96 percent, in battery terms, is huge. So, while we’re not quite to that 99.9 percent threshold, where we need to be, we’re close. And this is a significant improvement over any previous design,” Cui said. “With some additional engineering and new electrolytes, we believe we can realize a practical and stable lithium metal anode that could power the next generation of rechargeable batteries.”Source: Stanford School of Engineering (https://engineering.stanford.edu/news/stanford-team-achieves-holy-grail-battery-design-stable-lithium-anode)Image reprinted with permission from Interconnected hollow carbon nanospheres for stable lithium metal anodes ; Guangyuan Zheng, Seok Woo Lee, Zheng Liang, Hyun-Wook Lee, Kai Yan, Hongbin Yao; Nature Nanotechnology 2014.

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties

Nanotech-Now - July 29, 2014 - 7:45am
Rice University researchers are using magnetic beads and DNA "springs" to create chains of varying flexibility that can be used as microscale models for polymer macromolecules.
Categories: Nanotechnology News

Measuring the Smallest Magnets

Nanotech-Now - July 29, 2014 - 7:45am
Imagine trying to measure a tennis ball that bounces wildly, every time to a distance a million times its own size. The bouncing obviously creates enormous "background noise" that interferes with the...
Categories: Nanotechnology News

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany

Nanotech-Now - July 29, 2014 - 7:45am
The 11th confocal Raman Imaging Symposium will be held from September 29th - October 1st in Ulm, Germany. The well-established, annual symposium will cover various aspects of modern Raman microscopy a...
Categories: Nanotechnology News

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes

Nanotech-Now - July 29, 2014 - 7:45am
FEI (NASDAQ: FEIC) announced two new products for cryo-electron microscopy applications: a new phase plate solution and the Titan Halo™ transmission electron microscope (TEM). The phase plate is a sta...
Categories: Nanotechnology News

Production of Toxic Gas Sensor Based on Nanorods

Nanotech-Now - July 29, 2014 - 7:45am
Iranian researchers from Materials and Energy Research Center succeeded in the production of a type of sensor for poisonous gases based on nanorods through a fast and low-cost method.
Categories: Nanotechnology News

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara

Nanotech-Now - July 29, 2014 - 7:45am
Bruker today announced that it has acquired Vutara Incorporated, a technology leader in high-speed, three-dimensional (3D), super-resolution fluorescence microscopy for life science applications. Tran...
Categories: Nanotechnology News

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode

Nanotech-Now - July 29, 2014 - 7:45am
Engineers across the globe have been racing to design smaller, cheaper and more efficient rechargeable batteries to meet the power storage needs of everything from handheld gadgets to electric cars. ...
Categories: Nanotechnology News

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken

Nanotech-Now - July 29, 2014 - 7:45am
Iranian researchers from Islamic Azad University succeeded in the production of a nanoadsorbent that is capable of detecting harmful and poisonous compounds in chicken.
Categories: Nanotechnology News

Malvern Instruments completes acquisition of MicroCal and announces purchase of Archimedes product from Affinity Biosensors

Nanotech-Now - July 29, 2014 - 7:45am
Malvern Instruments Ltd (Malvern, UK) has today announced that it has completed the acquisition of MicroCal from GE Healthcare Life Sciences and has also purchased the Archimedes particle characteriza...
Categories: Nanotechnology News

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists

Nanotech-Now - July 29, 2014 - 7:45am
Silicene Labs, LLC, a pioneer in business-related research on nanomaterials, has created the definitive guide on two-dimensional (2D) materials for business, technology, and investment professionals -...
Categories: Nanotechnology News

Fluorophore positioning goes viral

Nanotechweb - July 28, 2014 - 10:07am
Researchers combine viral and DNA self-assembly methods to control the positioning of almost 200 fluorophores within nanometers of a gold nanoparticle.
Categories: Nanotechnology News

Hydrogen spills over large distances

Nanotechweb - July 28, 2014 - 2:29am
New work will be important for better understanding how catalysts work on the nanoscale and might even help in the production of next-generation biofuels for transport.
Categories: Nanotechnology News

Nano-supercapacitors for electric cars

Nanotech-Now - July 27, 2014 - 7:45am
Innovative nano-material based supercapacitors are set to bring mass market appeal a good step closer to the lukewarm public interest in Germany. This movement is currently being motivated by the adva...
Categories: Nanotechnology News

New imaging agent provides better picture of the gut

Nanotech-Now - July 27, 2014 - 7:45am
A multi-institutional team of researchers has developed a new nanoscale agent for imaging the gastrointestinal (GI) tract. This safe, noninvasive method for assessing the function and properties of th...
Categories: Nanotechnology News

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials

Nanotech-Now - July 27, 2014 - 7:45am
A new study by researchers from the University of Leicester has furthered our understanding of how tiny nanosystems function, unlocking the potential to create new materials using nanosized 'building...
Categories: Nanotechnology News