Feed aggregator

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose

Nanotech-Now - February 15, 2016 - 7:45am
The nanowires, with diameters as small as 200 nanometers (billionths of a meter) and a blend of materials that has also proven effective in next-generation solar cell designs, were shown to produce ve...

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells

Nanotech-Now - February 15, 2016 - 7:45am
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard's Wyss Institute for Biologically Ins...

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites

Nanotech-Now - February 15, 2016 - 7:45am
Iranian researchers produced nanoparticles with antibacterial properties, which have desirable performance in the presence of various types of bacteria.

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues

Nanotech-Now - February 15, 2016 - 7:45am
Iranian researchers from University of Zanjan produced polymeric nanofibers with optimized diameter and mechanical properties.

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology

Nanotech-Now - February 15, 2016 - 7:45am
Physicists at the Technical University of Munich (TUM) have developed a nanolaser, a thousand times thinner than a human hair. Thanks to an ingenious process, the nanowire lasers grow right on a silic...

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films

Nanotech-Now - February 15, 2016 - 7:45am
After more than half a decade of speculation, fabrication, modeling and testing, an international team of researchers led by Drexel University's Dr. Yury Gogotsi and Dr. Patrice Simon, of Paul Sabatie...

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence

Nanotech-Now - February 15, 2016 - 7:45am
The National Space Society pays tribute to Dr. Marvin Minsky, a pioneer of artificial intelligence, who served as a long-time member of the NSS Board of Governors, and was involved in the original mer...

Canadian Scientists Develop Innovative Protein Test for Zika

Nanotech-Now - February 15, 2016 - 7:45am
A group of Canadian scientists is creating one of the most groundbreaking tests for the Zika virus infection yet.

Polymer nanoparticles make cancer drug safer

Nanotechweb - February 15, 2016 - 4:54am
Accurins reduce the toxicity of aurora kinase inhibitors.

Porous silica nanocarrier reduces drug toxicity

Nanotechweb - February 15, 2016 - 4:54am
New research could help in the treatment of pancreatic cancer with the chemotherapeutic irinotecan.

JPK releases the world’s most flexible AFM - the NanoWizard® 4 NanoScience AFM

InterNano Industry News - February 13, 2016 - 4:45am
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, announces the latest in their series of world-leading AFM systems, the Nano...
Categories: Nanotechnology News

New device uses carbon nanotubes to snag molecules

InterNano Industry News - February 13, 2016 - 4:45am
Engineers at MIT have devised a new technique for trapping hard-to-detect molecules, using forests of carbon nanotubes. The team modified a simple microfluidic channel with an array of vertically aligned carbon nanotubes — rolled lattices of carbon atoms that resemble tiny tubes of chicken wire. The researchers had previously devised a method for standing carbon nanotubes on their ends, like trees in a forest. With this method, they created a three-dimensional array of permeable carbon nanotubes within a microfluidic device, through which fluid can flow. Now, in a study published this week in the Journal of Microsystems and Nanoengineering, the researchers have given the nanotube array the ability to trap certain particles. To do this, the team coated the array, layer by layer, with polymers of alternating electric charge. “You can think of each nanotube in the forest as being concentrically coated with different layers of polymer,” says Brian Wardle, professor of aeronautics and astronautics at MIT. “If you drew it in cross-section, it would be like rings on a tree.” Depending on the number of layers deposited, the researchers can create thicker or thinner nanotubes and thereby tailor the porosity of the forest to capture larger or smaller particles of interest.  The nanotubes’ polymer coating may also be chemically manipulated to bind specific bioparticles flowing through the forest. To test this idea, the researchers applied an established technique to treat the surface of the nanotubes with antibodies that bind to prostate specific antigen (PSA), a common experimental target. The polymer-coated arrays captured 40 percent more antigens, compared with arrays lacking the polymer coating. Wardle says the combination of carbon nanotubes and multilayer coatings may help finely tune microfluidic devices to capture extremely small and rare particles, such as certain viruses and proteins. “There are smaller bioparticles that contain very rich amounts of information that we don’t currently have the ability to access in point-of-care [medical testing] devices like microfluidic chips,” says Wardle, who is a co-author on the paper. “Carbon nanotube arrays could actually be a platform that could target that size of bioparticle.” The paper’s lead author is Allison Yost, a former graduate student who is currently an engineer at Accion Systems. Others on the paper include graduate student Setareh Shahsavari; postdoc Roberta Polak; School of Engineering Professor of Teaching Innovation Gareth McKinley; professor of materials science and engineering Michael Rubner, and Raymond A. And Helen E. St. Laurent Professor of Chemical Engineering Robert Cohen. A porous forest Carbon nanotubes have been a subject of intense scientific study, as they possess exceptional electrical, mechanical, and optical properties. While their use in microfluidics has not been well explored, Wardle says carbon nanotubes are an ideal platform because their properties may be manipulated to attract certain nanometer-sized molecules. Additionally, carbon nanotubes are 99 percent porous, meaning a nanotube is about 1 percent carbon and 99 percent air. “Which is what you need,” Wardle says. “You need to flow quantities of fluid through this material to shed all the millions of particles you don’t want to find and grab the one you do want to find.” What’s more, Wardle says, a three-dimensional forest of carbon nanotubes would provide much more surface area on which target molecules may interact, compared with the two-dimensional surfaces in conventional microfluidics. “The capture efficiency would scale with surface area,” Wardle notes. A versatile array The team integrated a three-dimensional array of carbon nanotubes into a microfluidic device by using chemical vapor deposition and photolithography to grow and pattern carbon nanotubes onto silicon wafers. They then grouped the nanotubes into a cylinder-shaped forest, measuring about 50 micrometers tall and 1 millimeter wide, and centered the array within a 3 millimeter-wide, 7-millimeter long microfluidic channel. The researchers coated the nanotubes in successive layers of alternately charged polymer solutions in order to create distinct, binding layers around each nanotube. To do so, they flowed each solution through the channel and found they were able to create a more uniform coating with a gap between the top of the nanotube forest and the roof of the channel. Such a gap allowed solutions to flow over, then down into the forest, coating each individual nanotube. In the absence of a gap, solutions simply flowed around the forest, coating only the outer nanotubes. After coating the nanotube array in layers of polymer solution, the researchers demonstrated that the array could be primed to detect a given molecule, by treating it with antibodies that typically bind to prostate specific antigen (PSA). They pumped in a solution containing small amounts of PSA and found that the array captured the antigen effectively, throughout the forest, rather than just on the outer surface of a typical microfluidic element. Wardle says that the nanotube array is extremely versatile, as the carbon nanotubes may be manipulated mechanically, electrically, and optically, while the polymer coatings may be chemically altered to capture a wide range of particles. He says an immediate target may be biomarkers called exosomes, which are less than 100 nanometers wide and can be important signals of a disease’s progression. “Science is really picking up on how much information these particles contain, and they’re sort of everywhere, but really hard to find, even with large-scale equipment,” Wardle says. “This type of device actually has all the characteristics and functionality that would allow you to go after bioparticles like exosomes and things that really truly are nanometer scale.” This research was funded, in part, by the National Science Foundation.
Categories: Nanotechnology News

Walter Schottky Institut

National Nanomanufacturing Network - February 12, 2016 - 11:20am
The Walter Schottky Institut (WSI) is a central institute of the Technische Universität München (TUM) which was founded in 1986 in order to strengthen the interaction between basic physics and semiconductor electronics research. It became operational in May 1988. The institute building contains laboratories and offices with a total area of about 2400 m2. Am Coulombwall 4 D-85748 Garching Germany

Growing nanowire lasers right on a silicon chip

National Nanomanufacturing Network - February 12, 2016 - 11:04am
Prof. Dr. Jonathan J. Finley, Technical University of MunichPhysicists at the Technical University of Munich (TUM) have developed a nanolaser, a thousand times thinner than a human hair.

Imaging cyclotron electron orbits in graphene

Nanotechweb - February 12, 2016 - 5:12am
New observations could help in the design of better devices made from atomically thin nanostructures.

Composite Pipe Long Term Testing Facility

Nanotech-Now - February 11, 2016 - 7:45am
Haydale Composite Solutions Ltd has commissioned a composite pipe testing facility with the support of Leicester City Council, Leicester and Leicestershire Enterprise Partnership (LLEP)**, the Region...

Scientists take nanoparticle snapshots

Nanotech-Now - February 11, 2016 - 7:45am
Just as a photographer needs a camera with a split-second shutter speed to capture rapid motion, scientists looking at the behavior of tiny materials need special instruments with the capacity to see...

Chemical cages: New technique advances synthetic biology

Nanotech-Now - February 11, 2016 - 7:45am
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules--the enzymes.

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics

Nanotech-Now - February 11, 2016 - 7:45am
An engineering research team at the University of Alberta has invented a new transistor that could revolutionize thin-film electronic devices.

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications

Nanotech-Now - February 11, 2016 - 7:45am
Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes resistance-free is minus 70 degrees Celsiu...