Feed aggregator

New technique uses fraction of measurements to efficiently find quantum wave functions

Nanotech-Now - August 29, 2014 - 7:45am
The result of every possible measurement on a quantum system is coded in its wave function, which until recently could be found only by taking many different measurements of a system and estimating a...
Categories: Nanotechnology News

Measure Both Elastic and Viscous Properties with AFM Using Asylum Research’s Exclusive AM-FM Viscoelastic Mapping Mode

Nanotech-Now - August 29, 2014 - 7:45am
Oxford Instruments Asylum Research announces the availability of its powerful new nanomechanical imaging technique, AM-FM Viscoelastic Mapping Mode, for its entire line of Cypher™ and MFP-3D™ atomic f...
Categories: Nanotechnology News

PetLife Comments on CNN Story on Scorpion Venom Health Benefits

Nanotech-Now - August 29, 2014 - 7:45am
PetLife Pharmaceuticals, Inc. (PINKSHEETS: EVGI) (PINKSHEETS: EVGID) today reported that CNN News has published a story, dated August 12, titled, "Bee, Scorpion and Snake Venom May Hold Cancer Cure."
Categories: Nanotechnology News

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents

Nanotech-Now - August 29, 2014 - 7:45am
Most of North America's megafauna — mastodons, short-faced bears, giant ground sloths, saber-toothed cats and American camels and horses — disappeared close to 13,000 years ago at the end of the Pleis...
Categories: Nanotechnology News

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference

Nanotech-Now - August 29, 2014 - 7:45am
Aspen Aerogels, Inc. (NYSE: ASPN) ("Aspen Aerogels") today announced that it will present at the Barclays CEO Energy-Power Conference being held at the Sheraton New York Hotel & Towers, New York, NY....
Categories: Nanotechnology News

Nanotubular coating improves vascular stents

Nanotechweb - August 28, 2014 - 7:29am
Nickel-titanium based medical implants are better when coated with tube-like structures.
Categories: Nanotechnology News

Advanced Nanomanufacturing at the Core of Potential New DARPA Program

National Nanomanufacturing Network - August 28, 2014 - 5:03am
The benefits of nanotechnology and nanomanufacturing include significantly improved properties of many common materials when fabricated at nanoscale or molecular dimensions. Examples of these properties include quantized electrical characteristics, enhanced adhesion and surface properties, superior thermal, mechanical, and chemical properties, and tunable light absorption and scattering. Scaling these properties for nano-enabled products and systems, could offer potentially revolutionary performance and capabilities for defense, security, and commercial applications while providing significant societal and economic impact. Key challenges and barriers remain to realizing such nano-enabled technologies that are central to emerging nanomanufacturing techniques, including retaining the nanoscale properties in materials at larger scales, and the maturity of assembly techniques for structures between the nanoscale and 100 microns. Recently, the Defense Advanced Research Project Agency (DARPA) has created the Atoms to Product (A2P) program to address and help overcome these challenges. The program seeks to develop enhanced technologies for assembling nanoscale elements coupled with integration and scale-up of these components into materials and systems to product scale in ways that preserve and exploit the distinctive nanoscale properties of the core element. “We want to explore new ways of putting incredibly tiny things together, with the goal of developing new miniaturization and assembly methods that would work at scales 100,000 times smaller than current state-of-the-art technology,” said John Main (http://www.darpa.mil/Our_Work/DSO/Personnel/Dr__John_Main.aspx), DARPA program manager, quoted from the DARPA website announcement (http://www.darpa.mil/NewsEvents/Releases/2014/08/22.aspx). “If successful, A2P could help enable creation of entirely new classes of materials that exhibit nanoscale properties at all scales. It could lead to the ability to miniaturize materials, processes and devices that can’t be miniaturized with current technology, as well as build three-dimensional products and systems at much smaller sizes.” The A2P program supports the emphasis on key challenges of nanomanufacturing for given applications extending previous investments in fundamental science and materials research. In this case, several emerging nanomanufacturing approaches and platforms are likely to contribute to such a program concept, including nanoimprint lithography, directed self-assembly (DSA), layer-by-layer (LBL) assembly, additive driven assembly, and hybrid processes incorporating solution-based and vacuum-based processing approaches. Further scalability through adaptation to existing manufacturing infrastructure such as roll-to-roll and print, additive manufacturing, or semiconductor “batch” type processing is likely to accelerate the pathway to commercialization, and further position these emerging nanomanufacturing processes for the eventual Factory of the Future. To familiarize potential participants with the technical objectives of the A2P program, DARPA has scheduled identical Proposers Day webinars. Participants must register through the registration website: DARPA (http://www.darpa.mil/NewsEvents/Releases/2014/08/22.aspx)

Large Area Growth of Single Layer Hexagonal Boron Nitride Films

National Nanomanufacturing Network - August 28, 2014 - 4:29am
Two-dimensional hexagonal boron nitride (h-BN) is a material of significant interest due to the strong ionic bonding of boron and nitrogen atoms that provides unique properties, including the thinnest insulating nanomaterial, exhibiting a bandgap of 5.9 eV, with superior chemical, mechanical, and thermal stability. In addition, h-BN provides an ideal substrate for improving the electrical properties of graphene since the surface is atomically smooth and free of dangling bonds, thereby reducing charge scattering effects resulting in an order of magnitude increase in graphene charge mobility over materials grown on silicon or silicon dioxide. Previously, the method to synthesize monolayer n-BN utilized ultra-high vacuum chemical vapor deposition (UHVCVD) using borazine as a precursor on single crystal transition metal substrates, such as nickel, platinum, or silver, but proved difficult to scale. Polycrystalline metal foils (Ni, Co, Cu, and Pt) were additionally used to grow h-BN using regular chemical vapor deposition (CVD), but the thickness and quality of the films critically depended on surface morphology and crystal orientation of the substrate. High quality h-BN has been synthesized on Pt foils using ammonia borane precursor, yet control of film thickness and domain size remains a challenge for scaling, and the specific growth mechanisms are not well understood. Recently, Park et.al., reported results from a systematic study for synthesis of large area single layer h-BN films on polycrystalline Pt foils using low pressure CVD comparing borazine and ammonia borane precursors. The authors’ goal was to study the effect of the Pt lattice orientation, the total pressure, and the different cooling rate in order to understand h-BN growth mechanisms. Since nitrogen is not soluble in Pt, the authors’ objective was to confirm the contributions to h-BN growth surface mediated and precipitation processes. The study included analysis of film properties dependence on cooling rate and crystal orientation of the substrate. Their findings demonstrated that film growth was by a surface mediated growth mechanism, facilitated by a catalytic reaction, that produced polycrystalline h-BN monolayers confined by the underlying Pt surface orientation. The thickness of the h-BN films exhibited a dependence on the Pt surface orientation, presumably determined by the available catalytic reaction sites that decompose the borazine precursor, which would exhibit a dependence on crystal orientation. Improved understanding of h-BN growth mechanisms will potentially lead to methods for controlling the growth of high-quality h-BN films. This further provides the basis for materials and substrates for application in quantum tunneling devices, novel heterostructures, and two-dimensional semiconductors such as molybdenum sulfide and graphene.Reference: Park J, Park JC, Yun SJ, Kim H, Luong DH, Kim SM, Choi SH, Yang W, Kong J, Kim KK, Lee YH. Large-Area Monolayer Hexagonal Boron Nitride on Pt Foil. ACS Nano. 2014; 8 (8): 8520-852 doi: 10.1021/nn503140y (http://pubs.acs.org/doi/full/10.1021/nn503140y#showRef) Image reprinted with permission from American Chemical Society.

JPK expands availability of instrumentation in the USA – appointing new distributors – launched a new web site to support the US market - AFM now available to US users

Nanotech-Now - August 27, 2014 - 7:45am
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, announces their expansion into the US market with new distributors and the...
Categories: Nanotechnology News

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications

Nanotech-Now - August 27, 2014 - 7:45am
Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-mak...
Categories: Nanotechnology News

Scientists craft atomically seamless, thinnest-possible semiconductor junctions

Nanotech-Now - August 27, 2014 - 7:45am
Scientists have developed what they believe is the thinnest-possible semiconductor, a new class of nanoscale materials made in sheets only three atoms thick.
Categories: Nanotechnology News

RMIT delivers $30m boost to micro and nano-tech

Nanotech-Now - August 27, 2014 - 7:45am
A new $AUD30 million research facility at RMIT University in Melbourne, Australia, will drive cutting-edge advances in micro- and nano-technologies.

Categories: Nanotechnology News

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues

Nanotech-Now - August 27, 2014 - 7:45am
A research group led by Dr. Masahiro Goto, a MANA Scientist at the Nano-Electronic Materials Unit, International Center for Materials Nanoarchitectonics, NIMS, and Dr. Michiko Sasaki, a NIMS Postdocto...
Categories: Nanotechnology News

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors

Nanotech-Now - August 27, 2014 - 7:45am
A new argument has just been added to the growing case for graphene being bumped off its pedestal as the next big thing in the high-tech world by the two-dimensional semiconductors known as MX2 materi...
Categories: Nanotechnology News

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission

Nanotech-Now - August 27, 2014 - 7:45am
By combining plasmonics and optical microresonators, researchers at the University of Illinois at Urbana-Champaign have created a new optical amplifier (or laser) design, paving the way for power-on-a...
Categories: Nanotechnology News

Thermal Block Coatings Developed in Iran Using Nanotechnology

Nanotech-Now - August 27, 2014 - 7:45am
Iranian researchers produced nanopowder that has application in increasing the efficiency of gas engines and turbines.
Categories: Nanotechnology News

Picosun joins forces with IMEC for novel, industrial ALD applications

Nanotech-Now - August 27, 2014 - 7:45am
Picosun Oy, the leading manufacturer of high quality Atomic Layer Deposition (ALD) equipment for global industries, teams up with IMEC to realize next generation's battery technology with its advanced...
Categories: Nanotechnology News

Iran Unveils 5 Home-Made Knowledge-Based Products

Nanotech-Now - August 27, 2014 - 7:45am
Iran on Monday unveiled 5 indigenized knowledge-based products in a ceremony in the central city of Isfahan in the presence of First Vice-President Eshaq Jahangiri.
Categories: Nanotechnology News

Nanotechnology engineering produces a water splitter that runs on an ordinary AAA battery

National Nanomanufacturing Network - August 27, 2014 - 4:56am
In 2015, American consumers will finally be able to purchase fuel cell cars from Toyota and other manufacturers. Although touted as zero-emissions vehicles, most of the cars will run on hydrogen made from natural gas, a fossil fuel that contributes to global warming. Now scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis. The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron. "Using nickel and iron, which are cheap materials, we were able to make the electrocatalysts active enough to split water at room temperature with a single 1.5-volt battery," said Hongjie Dai (http://dailab.stanford.edu/), a professor of chemistry at Stanford. "This is the first time anyone has used non-precious metal catalysts to split water at a voltage that low. It's quite remarkable, because normally you need expensive metals, like platinum or iridium, to achieve that voltage." In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical, according to Dai. He and his colleagues describe the new device in a study (http://dx.doi.org/10.1038/ncomms5695) published in the Aug. 22 issue of the journal Nature Communications. The promise of hydrogen Automakers have long considered the hydrogen fuel cell a promising alternative to the gasoline engine. Fuel cell technology is essentially water splitting in reverse. A fuel cell combines stored hydrogen gas with oxygen from the air to produce electricity, which powers the car. The only byproduct is water – unlike gasoline combustion, which emits carbon dioxide, a greenhouse gas.Earlier this year, Hyundai began leasing fuel cell vehicles in Southern California. Toyota and Honda will begin selling fuel cell cars in 2015. Most of these vehicles will run on fuel (http://energy.gov/eere/fuelcells/natural-gas-reforming) manufactured at large industrial plants that produce hydrogen by combining very hot steam and natural gas, an energy-intensive process that releases carbon dioxide as a byproduct. Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales. "It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," Dai said. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise." Saving energy and money The discovery was made by Stanford graduate student Ming Gong, co-lead author of the study. "Ming discovered a nickel-metal/nickel-oxide structure that turns out to be more active than pure nickel metal or pure nickel oxide alone," Dai said. "This novel structure favors hydrogen electrocatalysis, but we still don't fully understand the science behind it." The nickel/nickel-oxide catalyst significantly lowers the voltage required to split water, which could eventually save hydrogen producers billions of dollars in electricity costs, according to Gong. His next goal is to improve the durability of the device. "The electrodes are fairly stable, but they do slowly decay over time," he said. "The current device would probably run for days, but weeks or months would be preferable. That goal is achievable based on my most recent results" The researchers also plan to develop a water splitter than runs on electricity produced by solar energy. "Hydrogen is an ideal fuel for powering vehicles, buildings and storing renewable energy on the grid," said Dai. "We're very glad that we were able to make a catalyst that's very active and low cost. This shows that through nanoscale engineering of materials we can really make a difference in how we make fuels and consume energy."Source: Stanford University (http://news.stanford.edu/news/2014/august/splitter-clean-fuel-082014.html)

Optical Microscope Technique Confirmed as Valid Nano-Measurement Tool

National Nanomanufacturing Network - August 27, 2014 - 4:20am
Recent experiments have confirmed* that a technique developed several years ago at the National Institute of Standards and Technology (NIST) can enable optical microscopes to measure the three-dimensional (3-D) shape of objects at nanometer-scale resolution—far below the normal resolution limit for optical microscopy (about 250 nanometers for green light). The results could make the technique a useful quality control tool in the manufacture of nanoscale devices such as next-generation microchips. NIST’s experiments show that Through-focus Scanning Optical Microscopy (TSOM) is able to detect tiny differences in 3-D shapes, revealing variations of less than 1 nanometer in size among objects less than 50 nm across. Last year,** simulation studies at NIST indicated that TSOM should, in theory, be able to make such distinctions, and now the new measurements confirm it in practice. “Up until this point, we had simulations that encouraged us to believe that TSOM could allow us to measure the 3-D shape of structures that are part of many modern computer chips, for example,” says NIST’s Ravi Attota, who played a major role in TSOM’s development. “Now, we have proof. The findings should be helpful to anyone involved in manufacturing devices at the nanoscale.” Attota and his co-author, Ron Dixson, first measured the size of a number of nanoscale objects using atomic force microscopy (AFM), which can determine size at the nanoscale to high accuracy. However, the great expense and relatively slow speed of AFM means that it is not a cost-effective option for checking the size of large numbers of objects, as is necessary for industrial quality control. TSOM, which uses optical microscopes, is far less restrictive—and allowed the scientists to make the sort of size distinctions a manufacturer would need to make to ensure nanoscale components are constructed properly. Attota adds that TSOM can be used for 3-D shape analysis without needing complex optical simulations, making the process simple and usable even for low-cost nanomanufacturing applications. “Removing the need for these simulations is another way TSOM could reduce manufacturing costs,” he says. More details on the TSOM technique and its application to 3-D electronics manufacturing can be found in this story (http://www.nist.gov/public_affairs/tech-beat/tb20130625.cfm#tsom), which covers the 2013 simulation study. *R. Attota and R.G. Dixson. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes. Applied Physics Letters, 105, 043101, July 29, 2014, http://dx.doi.org/10.1063/1.4891676 (http://dx.doi.org/10.1063/1.4891676). **See the June 2013 NIST Tech Beat story, “Microscopy Technique Could Help Computer Industry Develop 3-D Components (http://www.nist.gov/public_affairs/tech-beat/tb20130625.cfm#tsom)” at www.nist.gov/public_affairs/tech-beat/tb20130625.cfm#tsom (http://www.nist.gov/public_affairs/tech-beat/tb20130625.cfm#tsom). Source: NIST (http://www.nist.gov/pml/div683/tsom-082614.cfm)