Feed aggregator

Tiny wires could provide a big energy boost

InterNano Industry News - July 25, 2015 - 3:45am
Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough power to transmit data. Now, researchers at MIT and in Canada have found a promising new approach to delivering the short but intense bursts of power needed by such small devices. The key is a new approach to making supercapacitors — devices that can store and release electrical power in such bursts, which are needed for brief transmissions of data from wearable devices such as heart-rate monitors, computers, or smartphones, the researchers say. They may also be useful for other applications where high power is needed in small volumes, such as autonomous microrobots. The new approach uses yarns, made from nanowires of the element niobium, as the electrodes in tiny supercapacitors (which are essentially pairs of electrically conducting fibers with an insulator between). The concept is described in a paper in the journal ACS Applied Materials and Interfaces by MIT professor of mechanical engineering Ian W. Hunter, doctoral student Seyed M. Mirvakili, and three others at the University of British Columbia. Nanotechnology researchers have been working to increase the performance of supercapacitors for the past decade. Among nanomaterials, carbon-based nanoparticles — such as carbon nanotubes and graphene — have shown promising results, but they suffer from relatively low electrical conductivity, Mirvakili says. In this new work, he and his colleagues have shown that desirable characteristics for such devices, such as high power density, are not unique to carbon-based nanoparticles, and that niobium nanowire yarn is a promising an alternative. “Imagine you’ve got some kind of wearable health-monitoring system,” Hunter says, “and it needs to broadcast data, for example using Wi-Fi, over a long distance.” At the moment, the coin-sized batteries used in many small electronic devices have very limited ability to deliver a lot of power at once, which is what such data transmissions need. “Long-distance Wi-Fi requires a fair amount of power,” says Hunter, the George N. Hatsopoulos Professor in Thermodynamics in MIT’s Department of Mechanical Engineering, “but it may not be needed for very long.” Small batteries are generally poorly suited for such power needs, he adds. “We know it’s a problem experienced by a number of companies in the health-monitoring or exercise-monitoring space. So an alternative is to go to a combination of a battery and a capacitor,” Hunter says: the battery for long-term, low-power functions, and the capacitor for short bursts of high power. Such a combination should be able to either increase the range of the device, or — perhaps more important in the marketplace — to significantly reduce size requirements. The new nanowire-based supercapacitor exceeds the performance of existing batteries, while occupying a very small volume. “If you’ve got an Apple Watch and I shave 30 percent off the mass, you may not even notice,” Hunter says. “But if you reduce the volume by 30 percent, that would be a big deal,” he says: Consumers are very sensitive to the size of wearable devices. The innovation is especially significant for small devices, Hunter says, because other energy-storage technologies — such as fuel cells, batteries, and flywheels — tend to be less efficient, or simply too complex to be practical when reduced to very small sizes. “We are in a sweet spot,” he says, with a technology that can deliver big bursts of power from a very small device. Ideally, Hunter says, it would be desirable to have a high volumetric power density (the amount of power stored in a given volume) and high volumetric energy density (the amount of energy in a given volume). “Nobody’s figured out how to do that,” he says. However, with the new device, “We have fairly high volumetric power density, medium energy density, and a low cost,” a combination that could be well suited for many applications. Niobium is a fairly abundant and widely used material, Mirvakili says, so the whole system should be inexpensive and easy to produce. “The fabrication cost is cheap,” he says. Other groups have made similar supercapacitors using carbon nanotubes or other materials, but the niobium yarns are stronger and 100 times more conductive. Overall, niobium-based supercapacitors can store up to five times as much power in a given volume as carbon nanotube versions. Niobium also has a very high melting point — nearly 2,500 degrees Celsius — so devices made from these nanowires could potentially be suitable for use in high-temperature applications. In addition, the material is highly flexible and could be woven into fabrics, enabling wearable forms; individual niobium nanowires are just 140 nanometers in diameter — 140 billionths of a meter across, or about one-thousandth the width of a human hair. So far, the material has been produced only in lab-scale devices. The next step, already under way, is to figure out how to design a practical, easily manufactured version, the researchers say. “The work is very significant in the development of smart fabrics and future wearable technologies,” says Geoff Spinks, a professor of engineering at the University of Wollongong, in Australia, who was not associated with this research. This paper, he adds, “convincingly demonstrates the impressive performance of niobium-based fiber supercapacitors.” The team also included PhD student Mehr Negar Mirvakili and professors Peter Englezos and John Madden, all from the University of British Columbia.
Categories: Nanotechnology News

Nanotechnology center gets $9.8M Air Force grant to develop bioprogrammable nanomaterials

InterNano Industry News - July 25, 2015 - 3:45am
The goal is to develop solutions to challenging problems in the areas of energy, the environment, security and defense, as well as for developing ways to monitor and mitigate human stress.
Categories: Nanotechnology News

Perovskite photovoltaics: Signs of stability - Nature.com

InterNano Industry News - July 25, 2015 - 3:45am
Nature.comPerovskite photovoltaics: Signs of stabilityNature.comThe results of Li et al. are thus an important step underlining the commercialization potential of organic–inorganic perovskite solar cells. The results on stability are encouraging. They, of course, do not solve other issues that will require ...and more »
Categories: Nanotechnology News

European collaboration accelerates silicon photonics prototyping services

InterNano Industry News - July 25, 2015 - 3:45am
Imec and its partners announced today that they have successfully completed a three-year program to leverage a variety of silicon photonics technologies by making them accessible for industry and academia worldwide.
Categories: Nanotechnology News

Major physics prize for graphene researcher

InterNano Industry News - July 25, 2015 - 3:45am
Dr Rahul Raveendran-Nair is the recipient of the 2015 Moseley medal and prize from the Institute of Physics for his outstanding contributions to our understanding of the electrical, optical and structural properties of graphene and its sister compounds.
Categories: Nanotechnology News

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers

Nanotech-Now - July 24, 2015 - 7:45am
Researchers from Bu-Ali Sina (Avicenna) University in association with an Iranian enterprise tried to detect effective parameters in the synthesis of gold nanocoatings.

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater

Nanotech-Now - July 24, 2015 - 7:45am
Iranian researchers used zero capacity iron nanoparticles to decrease the amount of heavy metals in wastewater produced by refineries.

Nanopaper as an optical sensing platform

Nanotech-Now - July 24, 2015 - 7:45am
An international team led by the ICREA Prof Arben Merkoçi has just developed new sensing platforms based on bacterial cellulose nanopaper. These novel platforms are simple, low cost and easy to produc...

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine

Nanotech-Now - July 24, 2015 - 7:45am
The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences (ACPHS) will host a Symposium and Workshop August 3-7 to explore the latest advances in the field of Nanomedicin...

More efficient process to produce graphene developed by Ben-Gurion University researchers

Nanotech-Now - July 24, 2015 - 7:45am
Ben-Gurion University of the Negev (BGU) and University of Western Australia researchers have developed a new process to develop few-layer graphene for use in energy storage and other material applica...

Researchers boost wireless power transfer with magnetic field enhancement

Nanotech-Now - July 24, 2015 - 7:45am
Research from North Carolina State University and Carnegie Mellon University shows that passing wireless power transfer through a magnetic resonance field enhancer (MRFE) - which can be as simple as a...

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium

Nanotech-Now - July 24, 2015 - 7:45am
A team of researchers from the University of Leicester and France's G2ELab-CNRS in Grenoble have for the first time observed the growth of free nanoparticles in helium gas in a process similar to the...

Global Nano-water Machine Industry 2015 Market Research Report

Nanotech-Now - July 24, 2015 - 7:45am
2015 Market Research Report on Global Nano-water Machine Industry was a professional and depth research report on Global Nano-water Machine industry.

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Proj

Nanotech-Now - July 24, 2015 - 7:45am
Dais Analytic Corporation (OTCQB: DLYT), a commercial nanotechnology materials business selling its industry-changing technology into the worldwide energy and water markets, announced today that the C...

How noisy are graphene biotransistors?

Nanotechweb - July 24, 2015 - 6:44am
US researchers have now answered this question for devices operating in liquid environments, and their research could help in the development of biosensors made from the carbon sheet.

NanoBCA Congratulates Winners of Presidential Green Chemistry Challenge Awards

National Nanomanufacturing Network - July 24, 2015 - 5:27am
The NanoBusiness Commercialization Association (http://nanobca.org/) (NanoBCA) would like to congratulate the winners of the 20th Annual Presidential Green Chemistry Challenge Awards. The U.S. Environmental Protection Agency (EPA) is recognizing landmark green chemistry technologies developed by industrial pioneers and leading scientists that turn climate risk and other environmental problems into business opportunities, spurring innovation and economic development. “From academia to business, we congratulate those who bring innovative solutions that will help solve some of the most critical environmental problems,” said Jim Jones, EPA’s Assistant Administrator for Chemical Safety and Pollution Prevention. “These innovations reduce the use of energy, hazardous chemicals and water, while cutting manufacturing costs and sparking investments. In some cases they turn pollution into useful products. Ultimately, these manufacturing processes and products are safer for people’s health and the environment. We will continue to work with the 2015 winners as their technologies are adopted in the marketplace.” The Presidential Green Chemistry Challenge Award winners were honored at a ceremony in Washington, DC. The winners and their innovative technologies are: Algenol in Fort Myers, Florida, is being recognized for developing a blue-green algae to produce ethanol and other fuels. The algae uses CO2 from air or industrial emitters with sunlight and saltwater to create fuel while dramatically reducing the carbon footprint, costs and water usage, with no reliance on food crops as feedstocks. This is a win-win for the company, the public, and the environment. It has the potential to revolutionize this industry and reduce the carbon footprint of fuel production. Hybrid Coating Technologies/Nanotech Industries of Daly City, California, is being recognized for developing a safer, plant-based polyurethane for use on floors, furniture and in foam insulation. The technology eliminates the use of isocyanates, the number one cause of workplace asthma. This is already in production, is reducing VOC’s and costs, and is safer for people and the environment. LanzaTech in Skokie, Illinois, is being recognized for the development of a process that uses waste gas to produce fuels and chemicals, reducing companies’ carbon footprint. LanzaTech has partnered with Global Fortune 500 Companies and others to use this technology, including facilities that can each produce 100,000 gallons per year of ethanol, and a number of chemical ingredients for the manufacture of plastics. This technology is already a proven winner and has enormous potential for American industry. SOLTEX (Synthetic Oils and Lubricants of Texas) in Houston, Texas, is being recognized for developing a new chemical reaction process that eliminates the use of water and reduces hazardous chemicals in the production of additives for lubricants and gasoline. If widely used, this technology has the potential to eliminate millions of gallons of wastewater per year and reduce the use of a hazardous chemical by 50 percent. Renmatix in King of Prussia, Pennsylvania, is being recognized for developing a process using supercritical water to more cost effectively break down plant material into sugars used as building blocks for renewable chemicals and fuels. This innovative low-cost process could result in a sizeable increase in the production of plant-based chemicals and fuels, and reduce the dependence on petroleum fuels. Professor Eugene Chen of Colorado State University is being recognized for developing a process that uses plant-based materials in the production of renewable chemicals and liquid fuels. This new technology is waste-free and metal-free. It offers significant potential for the production of renewable chemicals, fuels, and bioplastics that can be used in a wide range of safer industrial and consumer products. During the 20 years of the program, EPA has received more than 1500 nominations and presented awards to 104 technologies. Winning technologies are responsible for annually reducing the use or generation of more than 826 million pounds of hazardous chemicals, saving 21 billion gallons of water, and eliminating 7.8 billion pounds of carbon dioxide equivalent releases to air. An independent panel of technical experts convened by the American Chemical Society Green Chemistry Institute formally judged the 2015 submissions from among scores of nominated technologies and made recommendations to EPA for the 2015 winners. The 2015 awards event was held in conjunction with the 2015 Green Chemistry and Engineering Conference. Please help us spread the word about the 2015 winners and their innovative technologies within your own communication channels and through social media and web. Feel free to share this message with your contacts and repost the social media content. Share the Twitter post (https://twitter.com/EPA/status/620652522844368896). 2015 Presidential Green Chemistry Award winners blog (https://blog.epa.gov/blog/2015/07/american-innovators/). For more information on this year’s winners and those from the last two decades, visit http://www2.epa.gov/green-chemistry (http://www2.epa.gov/green-chemistry) Once again, the NanoBCA is proud to congratulate our colleagues in the nanotechnology community.

CNT fibres go stretchy

Nanotechweb - July 23, 2015 - 12:00pm
Carbon nanotubes wrapped around rubber cores might be used in a host of flexible electronics applications, including smart textiles and artificial muscles for robots.

New technology using silver may hold key to electronics advances

InterNano Industry News - July 23, 2015 - 3:45am
Engineers at Oregon State University have invented a way to fabricate silver, a highly conductive metal, for printed electronics that are produced at room temperature.
Categories: Nanotechnology News

Nanoparticle catalysts: Protected with graphene - Nature.com

InterNano Industry News - July 23, 2015 - 3:45am
Nanoparticle catalysts: Protected with grapheneNature.comHowever, the cells typically rely on catalysts made of expensive noble metals such as platinum, which limits their widespread commercialization. This has led to an extensive search for cheaper materials, but an alternative approach is to try to improve ...
Categories: Nanotechnology News

Polymer mold makes perfect silicon nanostructures

InterNano Industry News - July 23, 2015 - 3:45am
Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into everything from car parts to toys.
Categories: Nanotechnology News